المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24
من آداب التلاوة
2024-11-24
مواعيد زراعة الفجل
2024-11-24
أقسام الغنيمة
2024-11-24
سبب نزول قوله تعالى قل للذين كفروا ستغلبون وتحشرون الى جهنم
2024-11-24

احواله (صلّى اللّه عليه و آله)أيام رضاعته‏
10-12-2014
المعتصم محمد بن هارون (218 – 227هـ)
14-3-2018
انواع القسمة باعتبار المقسوم
24-5-2017
Thermoprotactants
9-7-2020
معنى كلمة أمم
30/11/2022
المجمع على إرثهم من الرجال والنساء
15-12-2019

David Kennedy-Fraser  
  
101   06:04 مساءً   date: 6-6-2017
Author : Biographical Index of Staff and Alumni (University of Edinburgh)
Book or Source : Biographical Index of Staff and Alumni (University of Edinburgh)
Page and Part : ...


Read More
Date: 7-6-2017 160
Date: 9-6-2017 140
Date: 13-6-2017 61

Born: 10 February 1888 in Edinburgh, Scotland

Died: 26 August 1962 in Milngavie, Dunbartonshire, Scotland


David Kennedy Fraser's father was Alec Yule Fraser (1850-1890). His mother was Marjory Kennedy (1857-1930). David's father died when he was two years old. His mother, Marjory, then lived in Mayfield Road, Edinburgh, with her own mother Elizabeth Kennedy and her two sisters Margaret and Jessie. David had a younger sister, Helen (born 1890).

David Kennedy Fraser attended George Watson's Boys' College in his home town of Edinburgh from 1893 to 1904. Fraser passed Latin at Higer level in the Scottish Leaving Certificate examinations in 1903, then, also at the Higher grade, Mathematics (Honours), Dynamics, and English in the following year. After having passed the Preliminary Examination for Edinburgh University, he first matriculated there in October 1904 at the age of sixteen. When he first matriculated he gave his address as 3 Mayfield Road, Edinburgh, but it was scored out and replaced by 95A George Street, Edinburgh.

In 1904-05, his first year of study, he took classes at Ordinary level in Mathematics, Latin, and Natural Philosophy. In 1905-06 he studied Logic and Chemistry at Ordainary level and Intermediate Mathematics at Honours level. After taking a Chemistry Laboratory course in the summer of 1906, he then studied Honours Advanced Mathematics in 1906-07. He took courses on Electricity, and Constitution of matter in the summer of 1907, then, in session 1907-08, he took Honours courses on Advanced Mathematics, Dynamics and Thermodynamics, and Electrostatics. He completed his degree with courses on Electrokinetics and on Function Theory in 1908-09.

Kennedy-Fraser was awarded a B.Sc. (Pure) in 1908 and an M.A. with Second Class Honours in Mathematics and Natural Philosophy in 1909. He then studied at the University of Leipzig and at Moray House in Edinburgh before going to the Cornell University in 1913 to study under G M Whipple. In the following year he was appointed Assistant Professor in the Department of Education at Cornell University. In May 1914 Cornell University newspaper contained this report:-

D Kennedy Fraser, a graduate of the University of Edinburgh, was elected assistant professor in the department of education, on account of the coming retirement of Professor De Garmo. Mr Fraser studied at the Teachers' Training College at Edinburgh and also at the University of Leipzig. During the last year he has been a student here under Professor G M Whipple.

In October 1914 there was a further report:-

Dr D Kennedy-Fraser, a graduate of the University of Edinburgh, who was assistant in the educational laboratory in 1913 - 14, has been appointed assistant professor of education for the coming year. He will carry on the courses of instruction announced by Dr Whipple and will have full charge of the educational laboratory. Dr Fraser is a man of broad education, thoroughly conversant with his field, and familiar with the methods which have made the work of the educational laboratory famous.

Back in Scotland, Kennedy-Fraser was appointed as a Lecturer in Education at Edinburgh University in 1919 and also at Moray House. He held these posts until 1923 when he was appointed as a Psychologist to Glasgow Education Authority and at the same time Lecturer in Psychology at Jordanhill Training College.

David Kennedy Fraser joined the Edinburgh Mathematical Society in June 1908 while he was still a student at the University of Edinburgh. He served the Society as a member of the library committee from November 1908, remaining in the post for several years. He was elected to the Royal Society of Edinburgh on 4 March 1929, his proposers being James Drever, George Alexander Carse, James Hartley Ashworth, Sir Edmund T Whittaker.

An obituary, written by 'A Former Colleague', appears in the Royal Society of Edinburgh Year Book 1963, pages 18-19. 
We give a version of this obituary at THIS LINK.

He was also a Fellow of the British Psychological Society, and of the Educational Institute of Scotland.

1.     David Kennedy-Fraser, M.A., B.Sc., F.E.I.S., Royal Society of Edinburgh Year Book 1963, 18-19.

2.     Biographical Index of Staff and Alumni (University of Edinburgh).

3.     Graduates in Arts, 1884-1925 (University of Edinburgh).

4.     Graduates in Arts (University of Edinburgh).

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.