المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

تماثيل تحتمس الثالث.
2024-04-22
مستحبات الخطيب لصلاة الجمعة
20-8-2017
أبو الريحان البيروني
2-6-2016
​فترة الشبق
3-5-2016
A-Sequence
22-10-2020
معرفة ثقافة الموت
22-11-2016

Georg Landsberg  
  
151   01:53 مساءً   date: 4-4-2017
Author : B Schoeneberg
Book or Source : Biography in Dictionary of Scientific Biography
Page and Part : ...


Read More
Date: 2-4-2017 62
Date: 2-4-2017 122
Date: 2-4-2017 62

Born: 30 January 1865 in Breslau, Germany (now Wrocław, Poland)

Died: 14 September 1912 in Kiel, Germany


Georg Landsberg attended school at Breslau. He then studied at the Universities of Breslau and Leipzig between 1883 and 1889. His doctorate was awarded by the University of Breslau in 1890.

Landsberg joined the teaching staff at the University of Heidelberg in 1893 and he taught there being promoted to professor in 1897. In 1904 he returned to Breslau as extraordinary professor of mathematics but he was only there for two years accepting an offer of a post at the University of Kiel. At Kiel he was promoted to ordinary professor of mathematics in 1911 but sadly he was only to hold this post for a short while since he died the following year.

Landsberg studied the theory of functions of two variables and also the theory of higher dimensional curves. In particular he studied the role of these curves in the calculus of variations and in mechanics.

He worked with ideas related to those of Weierstrass, Riemann and Heinrich Weber on theta functions and Gaussian sums. His most important work, however was his contribution to the development of the theory of algebraic functions of a single variable. Here he studied the Riemann-Roch theorem.

He was able to combine Riemann's function theoretic approach with the Italian geometric approach and with the Weierstrass arithmetical approach. His arithmetic setting of this result led eventually to the modern abstract theory of algebraic functions.

One of his most important works was Theorie der algebraischen Funktionen einer Varaiblen (Leipzig, 1902) which he wrote jointly with Kurt Hensel. This work remained the standard text on the subject for many years.


 

  1. B Schoeneberg, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830902451.html

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.