المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
غزوة الحديبية والهدنة بين النبي وقريش
2024-11-01
بعد الحديبية افتروا على النبي « صلى الله عليه وآله » أنه سحر
2024-11-01
المستغفرون بالاسحار
2024-11-01
المرابطة في انتظار الفرج
2024-11-01
النضوج الجنسي للماشية sexual maturity
2024-11-01
المخرجون من ديارهم في سبيل الله
2024-11-01


The Set of Real Numbers  
  
884   01:10 مساءً   date: 9-3-2017
Author : المرجع الالكتروني للمعلوماتيه
Book or Source : www.almerja.com
Page and Part : ...


Read More
Date: 19-1-2019 845
Date: 19-1-2019 649
Date: 9-3-2017 1495

First, a few terms:
Terminating Decimal: A decimal that ends, having a finite number of digits after the decimal point. Sample: 3/4 = 0.75

Repeating Decimal: A decimal that doesn't end; it shows a repeating pattern of digits after the decimal point. Sample: 1/3 = 0.3333...

For questions 1 and 2, show that the quotient of two integers is either a terminating or repeating decimal.

1) 3/4 = 0.75 = terminating decimal

2) 5/27 = 0.185. If you continue the division process, you will repeat 185 without bound. So, 5/27 = repeating decimal.

Sample C: Show that 1.3456 is the quotient of two integers.

Steps:

1) Express the decimal as a fraction over the proper place value.
2) Include the whole number in the numerator to match denominator place value.
3) Reduce to the lowest terms.

1.3456

= 1 and 3456/10,000

= 13,456/10,000

= 841/625

Sample D:

Show that 0.252525 (bar over 25) is the quotient of two integers.

Steps:

1) Let N = decimal digit repeated at least 3 times. This is our first equation.

2) Let 100N = represent the hundreths place of 0.25 times N. This is our second equation. We will need to multiply 0.25 by 100 to find our whole number (25). 

So far we have this:

N = 0.252525 (our first equation)

100N = 25.252525 (our second equation)

3) Subtract equation 1 from 2 this way:

100N = 25.252525
- N = 0.252525
-----------------------------------
99N = 25.000

4) Divide both sides by the coefficient to find the value of N.

5) Reduce fraction if needed.

N = 25/99

NOTE: To find the whole number in samples like equation 2:

If two digits repeat, multiply by 100, if one digit repeats, multiply by 10, if 3 digits repeat, multiply by 1,000, etc.

Sample E:

Is the number sqrt2 + 3.8 a rational or irrational?

What is an rational number?

Rational Number: 
A number r is rational if it can be written as a fraction r = p/q where both p and q are integers.

What is an irrational number?
Irrational Number: The number sqrt 5 by itself is not rational and is called irrational. This is not a definition of irrational numbers. In math, it's not quite true that what is not rational is irrational. Irrationality is a term reserved for a very special kind of number.

In sample E above, when adding a rational and irrational number, the result will be the sum of a nonrepeating and nonterminating decimal. So, sqrt2 + 3.8 = irrational.

For questions 1 and 2 below, express each decimal as a quotient of two integers.
1) 4.5 (bar over 5)
N = 4.555
10N = 45.555

10N = 45.555
- N = 4.555
-----------------------
9N = 41.000
N = 41/9

2) 0.75 (bar over 75)
N = 0.757575
100N = 75.757575

100N = 75.757575
- N = 0.757575
----------------------------
99N = 75.000

N = 75/99
N = 25/33


For this next question, there is no repetend.
3) 0.64 = 64/100 = 16/25

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.