المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
القيمة الغذائية للثوم Garlic
2024-11-20
العيوب الفسيولوجية التي تصيب الثوم
2024-11-20
التربة المناسبة لزراعة الثوم
2024-11-20
البنجر (الشوندر) Garden Beet (من الزراعة الى الحصاد)
2024-11-20
الصحافة العسكرية ووظائفها
2024-11-19
الصحافة العسكرية
2024-11-19

Zero Rest Mass Equation
25-7-2018
تّميز الاتهام عن التهمة
11-5-2017
الكلام واللغة (عناصر النظام الصوتي)
28-11-2018
Pinching Theorem
19-9-2018
تعدد الزوجات قبل الاسلام
1-2-2017
Applications of Scandium
25-11-2018

Imaginary Numbers  
  
866   02:05 مساءً   date: 13-3-2017
Author : المرجع الالكتروني للمعلوماتيه
Book or Source : www.almerja.com
Page and Part : ...


Read More
Date: 8-3-2017 1135
Date: 6-3-2017 929
Date: 13-2-2019 952

What is the square root of a negative number? Did you know that no real number multiplied by itself will ever produce a negative number? Finding the square root of 4 is simple enough: either 2 or -2 multiplied by itself gives 4. However, there is no simple answer for the square root of -4.

So, what do you do when a discriminant is negative and you have to take its square root? This is where imaginary numbers come into play. Essentially, mathematicians have decided that the square root of -1 should be represented by the letter i. So, i = sqrt(-1), or you can write it this way: -1 1/2 or you can simply say: i 2 = -1.

What you should know about the number i:

1) i is not a variable.
2) i is not found on the real number line.
3) i is not a real number.

Sample A:

Simplify (4i) 2

Steps:

1) Multiply 4i times 4i. This will produce 16(i 2 ).

2) Multiply 16 times -1 because i2 equals -1.

The answer is: -16.

Sample B:

Simplify sqrt(-80).

Steps:

1) Multiply two radicands keeping in mind that one of them has to be a perfect square. How about sqrt(16) times sqrt(5)? Yes, this will produce sqrt(80). Also, don't forget to multiply sqrt(-1) times sqrt(16) times sqrt(5).

2) Simplify square roots where needed. For example, sqrt(16) becomes simply 4 and sqrt-1 simply becomes the number i.

3) Put it all together this way: 4i(sqrt(5)) or 4i times the square root of 5.

NOTE: You cannot reduce sqrt5 anymore because it is already in lowest terms.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.