المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

المرجعية والخزين المعرفي
3-1-2022
الإسلام والمحبة
2023-12-31
الترحيل الكهربائي لبروتينات مصل الدم Serum protein electrophoresis
27-11-2020
Complex Division
1-11-2019
مولده (عليه السلام) وكناه والقابه
9-04-2015
قاعدة « لا تجتمع الزكاتان في عين واحدة‌ »
20-9-2016

Karl Heun  
  
85   02:11 مساءً   date: 26-2-2017
Author : Die Kugelfunctionen und Laméschen Functionen als Determinanten
Book or Source : Inaugural Dissertation, Göttingen 1881
Page and Part : ...


Read More
Date: 1-3-2017 189
Date: 19-2-2017 73
Date: 18-2-2017 70

Born: 3 April 1859 in Wiesbaden, Germany

Died: 10 January 1929 in Karlsruhe, Germany


Karl Heun went to school in Wiesbaden and he began his study in mathematics and philosophy in 1878 in Göttingen (with Ernst Schering, Alfred Enneper, Hermann Amandus Schwarz). After two years he moved to Halle to study with Eduard Heine who, in 1861, had published his famous book on spherical harmonics. The first part of this book appeared in its second edition in 1878. Heun stayed in Halle only between April and October 1880, probably due to the deteriorating health of Heine who died in 1881.

He returned to Göttingen and started with his thesis which was inspired by Heine and supervised by the astronomer Ernst Schering. His 1881 doctoral thesis bears the title Die Kugelfunctionen und Laméschen Functionen als Determinanten. After his doctorate he worked as an instructor at an agricultural winter school in Wehlau (eastern Prussia). This led to his qualification as teacher for secondary schools in Prussia.

Heun then moved to England and taught for two and a half years (1883-1885) at the Public School in Uppingham. In 1885/86 he complemented his studies in London. His Munich habilitation thesis from July 1886 is entitled Über lineare Differentialgleichungen zweiter Ordnung, deren Lösungen durch den Kettenbruchalgorithmus verknüpft sind. From 1886 to 1889 he lectured at the University of Munich on topics like: the theory of rational functions and their integrals, the theory of linear differential equations, introduction to the theory of linear substitutions and the general theory of differential equations. The seminal work from his time at Munich is Zur Theorie der Riemann'schen Functionen zweiter Ordnung mit Vier Verzweigungspunkten [3].

Due to lack of financial support he left Munich and worked again as a teacher in Berlin from 1890 to 1902. At this time he became known in Germany, mainly due to his 1899 address at the Munich meeting of the DMV (Deutsche-Mathematiker-Vereinigung) whose complete version was published as Die kinetischen Probleme der wissenschaftlichen Technik [5].

In 1900 Heun was honoured with the title professor, and in 1902 he was nominated as first candidate for the vacant chair in technical mechanics at Technische Hochschule Karlsruhe. He had been recommended by Felix Klein. Heun accepted this offer and stayed in Karlsruhe until his death in 1929.

In 1883 Heun had married a widow Henriette Jatho (née Bock) with two children Alfred and Paul Jatho; together they had a son Howard (1884-1902) and a daughter Charlotte (1891-1948).

In 1912 he was honoured with the title 'Geheimer Hofrat'. Technische Hochschule Berlin-Charlottenburg awarded him an honorary doctorate in 1921.

His assistants in Karlsruhe were Georg Hamel (from 1902 to 1905), Max Winkelmann (from 1905 to 1911) and Fritz Noether (from 1911 to 1918). Kurt von Sanden was his student from 1905 to 1909, and he became Heun's successor in 1923.

Heun did not recover from a stroke he suffered in 1921 and retired in 1922.

The Heun equation is a second order linear differential equation of the Fuchsian type with four singular points. It generalizes the hypergeometric differential equation which has three singular points, and is used today in mathematical physics, e.g. in the context of integrable systems.


 

  1. Die Kugelfunctionen und Laméschen Functionen als Determinanten, Inaugural Dissertation, Göttingen 1881.
  2. Untersuchungen ber die Gaussische Quadraturmethode, Wissenschaftliche Beilage zum Programm der Ersten Höheren Bürgerschule zu Berlin Ostern 1892. Gaertner, Berlin 1892 Heft 19.
  3. Zur Theorie der Riemann'schen Functionen zweiter Ordnung mit Vier Verzweigungs-punkten, Math. Ann. 31 (1889) 161-179.
  4. Neue Methode zur approximativen Integration der Differentialgleichungen mit einer unabhängigen Variablen, Zeitschr. f. Math. u. Physik 45 (1900) 23-28.
  5. Die kinematischen Probleme der wissenschaftlichen Technik, Jber. dt. Math. Vereinig9 2. Abt. (1900) 1-123.
  6. Lehrbuch der Mechanik, I. Teil: Kinematik, Leipzig, G.J.Göschen'sche Verlagshandlung, 1906.
  7. Ansätze und allgemeine Methoden der Systemmechanik. Encyclopädie der mathematischen Wissenschaften, Bd.IV,1 Teil 2 Heft 3, Leipzig, 1913, 148 pp.

Articles:

  1. A Ishkhanyan and K-A Suominen, New solutions of Heun's general equation, J. Phys. A: Math. Gen. 2003 36 L81-L85,
    http://www.iop.org/EJ/abstract/0305-4470/36/5/101
  2. R S Maier, On reducing the Heun equation to the hypergeometric equation, J. Differential Equations 213 (2005) 171-203, 
    http://arxiv.org/abs/math.CA/0203264
  3. M von Renteln, Karl Heun - his life and his scientific work, in [12], p. XVII-XX, with a photograph of Heun on p. XVI.
  4. M von Renteln, Die Mathematiker an der TH Karlsruhe (1825-1945), Druckerei Ernst Grässer, Karlsruhe2. Auflage 2002, pp. 173-186.
  5. A Ronveaux (ed.): Heun's Differential Equation, (Oxford 1995)
  6. A O Smirnov, Elliptic solitons and Heun's equation, CRM Proceedings and Lecture Notes, 2002, v.32, p.287-305, (Web version)
  7. K Takemura, The Heun equation and the Calogero-Sutherland system I: the Bethe Ansatz method, Communications in Mathematical Physics 235 467 (2003)
  8. K Takemura, The Heun equation and the Calogero-Sutherland system IV: the Hermite-Kritchever Ansatz, 
    http://arxiv.org/abs/math.CA/0406141
  9. G. Valent, Heun functions versus elliptic functions, 
    http://arxiv.org/abs/math-ph/0512006

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.