المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
تـشكيـل اتـجاهات المـستـهلك والعوامـل المؤثـرة عليـها
2024-11-27
النـماذج النـظريـة لاتـجاهـات المـستـهلـك
2024-11-27
{اصبروا وصابروا ورابطوا }
2024-11-27
الله لا يضيع اجر عامل
2024-11-27
ذكر الله
2024-11-27
الاختبار في ذبل الأموال والأنفس
2024-11-27

مفهوم نظرية الصعوبات المادية غير المتوقعة
22/10/2022
المعتقدات – الصورة الذاتية تتحدى
24-11-2016
نشأة الوحدة الادارية الاقليمية في العراق
2-4-2016
Productivity versus creativity
19-1-2022
occlusion (n.)
2023-10-19
الهجاء
17-6-2017

Johann Heinrich Graf  
  
85   02:00 مساءً   date: 26-2-2017
Author : E Neuenschwander
Book or Source : Biography in Historical Dictionary of Switzerland
Page and Part : ...


Read More
Date: 25-2-2017 179
Date: 1-3-2017 194
Date: 28-2-2017 186

Born: 16 August 1852 in Töss, Zürich, Switzerland

Died: 17 June 1918 in Bern, Switzerland


Johann Heinrich Graf was the son of Margaretha Kläui and Rudolf Graf, a policeman. Although his parents were from Töss (which is now part of Winterthur), his place of origin is Wildberg, Zürich.

After having attended primary school in Töss and secondary school in Zürich, Graf studied at the private teachers' college Muristalden, close to Bern, from 1868-1871. He obtained a certificate as a primary school teacher, but went on to do further studies at the Eidgenössisches Polytechnikum Zürich (since 1911 Eidgenössische Technische Hochschule Zürich).

In 1874 he graduated from the Polytechnikum with a certificate as a secondary school science teacher. In the same year, he married Anna Luisa Däniker, from Zürich. Also, he moved back to Bern where he taught mathematics and physics at the private secondary school Lerberschule (founded in 1859, renamed Freies Gymnasium Bern in 1892). Furthermore, he matriculated at the University of Bern as a PhD student. His supervisor was Ludwig Schläfli, whom he admired [3]:-

Schläfli, who held the chair of mathematics at the University of Bern at the time, guided his research and to him became a beloved teacher who he never forgot.

Graf was awarded his doctorate for his thesis Beiträge zur Theorie der Riemann'schen Fläche (Contributions to the theory of the Riemann surface) in 1877. In 1878, he became a private lecturer (Privatdozent) at the University of Bern. In addition to his duties at the university, he continued teaching at the Lerberschule and, in 1885, he even became the first deputy headmaster of the school. However, being an "inveterate" [2] advocate of the sciences, Graf was not deemed a suitable candidate for the position as headmaster of the school a few years later, as the school was based on Christian and humanistic principles. Furthermore, his workload at the university increased.

In 1890 he was appointed as an extraordinary professor; two years later he became Schläfli's successor when Schläfli retired, being appointed to an ordinary professorship. Graf was a popular teacher and lecturer [3]:-

His well-prepared courses, his clear and lively lectures always attracted the sympathy of his audience. Besides, he loved his students. ... Even when they had been released into life, he did not leave them and continued to take an interest in their careers, their success in education or in the pursuit of their scientific research.

In 1898, he entered his second marriage, with Maria Magdalena Balli from Aarmühle. He held the chair of mathematics at the University of Bern until his death in 1918.

Graf's main mathematical interests were in Bessel functions, gamma functions and spherical functions. Crelier remarks in [3] that much of Graf's research was inspired by Schläfli's papers on these functions. Today he is best known for Graf addition theorems for Bessel functions and other such functions. Examples of his papers are: Ueber die Addition und Subtraction der Argumente bei Bessel'schen Functionen nebst einer Anwendung (1893); Beiträge zur Auflösung von linearen Differentialgleichungen zweiter Ordnung mit linearen Coefficienten sowie von Differentialgleichungen zweiter Ordnung, denen gewisse bestimmte Integrale genügen (1894); and Beitrag zur Auflösung von Differentiagleichungen zweiter Ordnung, denen gewisse bestimmte Integrale genügen (1902). Graf also took a keen interest in actuHelvetica sciences; he published a number of papers on insurance funds and lectured on actuHelvetica mathematics from 1902-1918 at the University of Bern.

His other areas of interest were in the history of mathematics and cartography. Between 1890 and 1912, he wrote numerous articles called Notes on the History of Mathematics and Sciences in Switzerland. He published biographies of a several Swiss mathematicians, cartographers and astronomers, including Ludwig Schläfli and Jakob Steiner. Graf also edited Schläfli's correspondence with Steiner, Arthur Cayley and Carl Borchardt.

Throughout his life, Graf held a large number of administrative positions. At the University of Bern, he served as dean of the faculty of philosophy and sciences for three years (1900-1902 and 1910-1911). During 1905-1906 he was also vice chancellor of the university. Furthermore, he was a member of various committees and introduced several insurance funds, such as the university's fund for widows and orphans.

For most of his professional life, Graf was a member of the Swiss and the Bernese Societies for Natural Scientists; he was the editor of the communications of the Bernese society from 1883-1910.

From 1895 until his death, Graf was president of the Swiss library committee. He was one of the people responsible for the foundation of the Swiss National Library. Moreover, he was a member of the Bernese city council during 1889-1895 and a member of the Bernese district council during 1896-1911. Although originally from Zürich, Graf became [3]:-

... an excellent Bernese who was held in high esteem by all his fellow citizen


 

  1. E Neuenschwander, Biography in Historical Dictionary of Switzerland (2010). 
    http://www.hls-dhs-dss.ch/textes/d/D32080.php

Articles:

  1. B Bietenhard, Freies Gymnasium Bern 1859-2009, 150 Jahre Schulgeschichte, Das Jubiläumsbuch. 150 Jahre Freies Gymnasium Bern (2009), 13-82.
  2. L Crelier, Professeur Dr J H Graf (1852-1918), Verhandlungen der Schweizerischen Naturforschenden Gesellschaft 100-1 (1918), 105-114.
  3. M Plancherel, Mathématiques et mathématiciens en Suisse (1850-1950), L'Enseignement Mathématique 6 (1960), 194-218
  4.  der Universität Bern. 
    http://apps.uniarchiv.unibe.ch/syscomm/images/mata/3032_3044.gif
  5. Johann Heinrich Graf, Dozenten der Universität Bern 1528 bis 1984, Universität Bern. 
    http://digibiblio.unibe.ch/digibern/Chopin/Engine/Alpha/viewer.asp?KatalogID=6&ImgNum=479&RecordNr=480
  6. Rektoren 1834 bis heute, Universität Bern. 
    http://www.imsv.unibe.ch/content/staff/alumnaeprof/graf/index_ger.html

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.