تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Relations-Ordered Pairs, Cartesian Products
المؤلف:
Ivo Düntsch and Günther Gediga
المصدر:
Sets, Relations, Functions
الجزء والصفحة:
21-23
14-2-2017
1805
As stated previously, if a set A is given explicitly, it is immaterial in which order the elements of A are listed, e.g. the set {x,y} is the same as the set {y,x}. In many instances, however, one would like, and, indeed, needs, to have some order in the appearance of the elements.
As an example, consider a coordinate plane with an x-axis and a y-axis; then we can identify any point in the plane by its coordinates 〈x, y〉. If you wanted to find〈〉
the point 〈a,b〉, you would move on the x-axis a units to the right or to the left from the origin (depending on the sign of a), and then you would move b units up or down. If a and b are different, then 〈a,b〉and 〈a,b〉denote different points. So, in this example the order in which the elements appear is relevant. This leads to the following
Definition 1.1. Let A be a set;
1. A is called a singleton if A = {x} for some x, i.e. if A has exactly one element.
2. A is called an unordered pair, if A = {x,y} for some x,y, if A has exactly two elements.
3. A is called an ordered pair if A = {{x}, {x,y}} for some x,y.
We shall usually abbreviate the right hand expression by
〈 x,y〉 = {{x}, {x, y}}.
The decisive property of ordered pairs is that two ordered pairs are equal if the respective components are the same. The following Theorem assures us, that the ordered pair as we have defined it has this property:
Theorem 1.1. Let 〈a,b〉and (c,d) be ordered pairs. Thenha, bi = 〈 c,d〉 if and only if a = c and b = d.
Remark. The expression “if and only if” means that
1. If 〈a,b〉= 〈 c,d〉, then a = c and b = d.
2. If a = c and b = d, then 〈a,b〉= 〈c, d〉. (This is called "the converse" of 1.)
So, we have to prove two directions, namely 1. and 2. Usually, “if and only if” is abbreviated as simply “iff”.
Proof. “⇒”: Suppose 〈a,b〉= 〈c, d〉; then, by definition,
〈a,b〉= {{a}, {a,b}},
〈c, d〉= {{c}, {c,d}},
and since they are equal by our hypothesis, we have
{{a}, {a,b}} = {{c}, {c,d}}.
We consider two cases:
1. a = b: Then,
〈a,b〉= {{a}, {a,b}} = {{a}} = {{c}, {c, d}},
hence, {a} = {c} which implies a = c. Furthermore, {a} = {c,d} = {a,d} which implies d = a = b. Thus, for this case we have shown that a = c and b = d.
2. a ≠b: Then, {a} ≠{a,b}. By our hypothesis we must have {a} = {c}, since both sets have only one element; this implies a = c.
Furthermore, {a, b} = {c,d}, since {a,b} has two elements. We have just shown that a = c, thus, {a,b} = {c, b} = {c,d}. This implies b = d, and this is what we wanted to show.
“⇐”: For the converse, let a = c and b = d; then, {a} = {c}, and {a,b} = {c,d},
hence,
〈a,b〉= {{a}, {a,b}} = {{c}, {c,d}} = 〈c, d〉
which is what we wanted to show.
You need only remember the property of ordered pairs given in the preceding Theorem;
it is not necessary to remember the set theoretic definition.
Definition 1.2. The Cartesian (or cross-) product A × B of two sets is defined
as
A × B = {〈a,b〉: a ∈ A, b ∈ B}
So, the operation × pairs the elements of A with the elements of B in such a way that the elements of A appear as first components, and the elements of B appear as second components. It is also possible to define Cartesian products for more than two factors, but we shall not do this at this stage.
Example.1. 1. Let A = {1, 2, 3} and B = {a,b}; then
2. Let A = R and B = R; then A × B = R × R is the set of all points in the Cartesian coordinate plane.
3. Let then A × B is the set of all points in
the plane which lie inside a square of side length 2 with centre at the origin.
الاكثر قراءة في نظرية المجموعات
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
