تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Sets-Introduction to Sets
المؤلف:
Ivo Düntsch and Günther Gediga
المصدر:
Sets, Relations, Functions
الجزء والصفحة:
7-9
14-2-2017
1494
Mathematics deals with objects of very different kinds; from your previous experience, you are familiar with many of them: Numbers, points, lines, planes, triangles, circles, angles, equations, functions and many more. Often, objects of a similar nature or with a common property are collected into sets; these may be finite or infinite (For the moment, it is enough if you have an intuitive understanding of finite, resp. infinite; a more rigorous definition will be given at a later stage). The objects which are collected in a set are called the elements of that set. If an object a is an element of a set M, we write
a ∈ M
which is read as a (is an) element of M.
If a is not an element of M, then we write
a ∉M
which is read as a is not an element of M.
Example 1.1.. If Q is the set of all quadrangles, and A is a parallelogram, then A ∈ Q. If C is a circle, then C ∉Q.
2. If G is the set of all even numbers, then 16 ∈ G, and 3 ∉G.
3. If L is the set of all solutions of the equation x2 = 1, then 1 is an element of L, while 2 is not.
Generally, there are two ways to describe a set:
• By listing its elements between curly brackets and separating them by commas,
e.g.
{0},
{2, 67, 9},
{x,y, z}.
Note that this is convenient (or indeed possible) only for sets with relatively few elements. If there are more elements and one wants to list the elements “explicitly” sometimes periods are used; for example,
{0, 1, 2, 3,. ..}, {2, 4, 6,. .. , 20}.
The meaning should be clear from the context. In this descriptive or explicit method, an element may be listed more than once, and the order in which the elements appear is irrelevant. Thus, the following all describe the same set:
{1, 2, 3}, {2, 3, 1}, {1, 1, 3, 2, 3}.
• By giving a rule which determines if a given object is in the set or not; this is also called implicit description; for example,
1. {x : x is a natural number}
2. {x : x is a natural number and x > 0}
3. {y : y solves (y + 1) · (y − 3) = 0}
4. {p : p is an even prime number}.
Usually, there is more than one way of describing a set. Thus, we could have written
1. {0, 1, 2,...}
2. {1, 2, 3,...}
3. {−1, 3}
4. {2} or {x : 2x = 4}
The general situation can be described as follows: A set is determined by a defining property P of its elements, written as
{x : P(x)}
where P(x) means that x has the property described by P. The letter x serves as a variable for objects; any other letter, or symbol except P, would have done equally well; similarly, P is a variable for properties or, as they are sometimes called, predicates. To avoid running into logical difficulties we shall always assume that our objects which are described by the predicate P come from a previously well defined set, say M, and sometimes we shall say so explicitly. In general then, we describe sets by
{x : x ∈ M and P(x)},
which also can be written as
{x ∈ M : P(x)}.
We shall use the following conventions in describing certain sets of numbers:
• N = {0, 1, 2, 3,.. .} is the set of natural numbers.
• N+ = {1, 2, 3,. ..} is the set of positive natural numbers.
• Z = {... , −3, −2, −1, 0, 1, 2, 3,.. .} is the set of integers.
• Q = {x : x =a/b }, where a ∈ Z,b ∈ Z, and b ≠0, is the set of rational numbers; observe that each rational number is the ratio of two integers, whence the name.
• R = {x : x is a real number}.
We shall not give a rigorous definition of a real number; it is assumed that you have an intuitive idea of the reals - think of them as being the points on a straight line.
الاكثر قراءة في نظرية المجموعات
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
