المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر
دين الله ولاية المهدي
2024-11-02
الميثاق على الانبياء الايمان والنصرة
2024-11-02
ما ادعى نبي قط الربوبية
2024-11-02
وقت العشاء
2024-11-02
نوافل شهر رمضان
2024-11-02
مواقيت الصلاة
2024-11-02

احترازية القيود
8-9-2016
البناء الهيكلي للطاقة المتجددة في الوطن العربي
23-11-2020
بشرى آية سورة النور بحق الامام المهدي
6-12-2015
اعلان عائشة العصيان
1-5-2016
سخط عام
25-11-2019
مركز مدرسته
12-4-2016

The 3 + 1 split and the Cauchy initial value problem  
  
1180   05:37 مساءً   date: 29-1-2017
Author : Heino Falcke and Friedrich W Hehl
Book or Source : THE GALACTIC BLACK HOLE Lectures on General Relativity and Astrophysics
Page and Part : p 186


Read More
Date: 16-12-2015 1487
Date: 22-12-2015 1608
Date: 6-2-2017 1008

The 3 + 1 split and the Cauchy initial value problem

We saw that the ten Einstein equations decompose into two sets of four and six equations respectively, four constraints which the initial data have to satisfy, and six equations driving the evolution. As a consequence, there will be four dynamically undetermined components among the ten components of the gravitational field gμν. The task is to parametrize the gμν in such a way that four dynamically undetermined functions can be cleanly separated from the other six. One way to achieve this is via the splitting of spacetime into space and time. The four dynamically undetermined quantities will be the famous lapse (one function α) and shift (three functions βi ). The dynamically determined quantity is the Riemannian metric hi j on the spatial three manifolds of constant time. These together parametrize gμν as follows:

 (1.1)

The physical interpretation of α and βi is: think of spacetime as the history of space. Each ‘moment’ of time, x0 = t, corresponds to an entire three-dimensional slice Σt . Obviously there is plenty of freedom in how to ‘waft’ space through spacetime. This freedom corresponds precisely to the freedom to choose the 1+3 functions α and βi . For one thing, you may freely specify how far for each parameter step dt you push space in a perpendicular direction forward in time. This is controlled by α, which is just the ratio ds/dt of the proper perpendicular distance between the hypersurfaces Σt and Σt+dt . This speed may be chosen in a space and time-dependent fashion, which makes α a function on spacetime. Second, let a point be given with coordinates xi on Σt . Going from xi in a perpendicular direction you meet Σt+dt in a point with coordinates xi + dxi , where dxi can be chosen at will. This freedom of moving the coordinate system around while evolving is captured by βi ; one writes dxi = βidt. Clearly this moving around of the spatial coordinates can also be made in a space- and time dependent fashion, so that the βi are functions of spacetime, too.

Let nμ be the vector field in a spacetime which is normal to the spatial sections of constant time. It is given by n = 1/α (/x0βi/xi ), as one may readily verify by using (1.1) (you have to check that n is normalized and satisfies       g(n, /xi ) = 0). We define the extrinsic curvature, Ki j , to be one half the Lie derivative of the spatial metric in the direction of the normal:

 (1.2)

where D is the spatial covariant derivative with respect to the metric hi j. As usual, a round bracket around indices denotes their symmetrization. Note that, by definition, Ki j is symmetric. Finally we denote the Ricci scalar of hi j by R(3). We can now write down the four constraints of the vacuum Einstein equations in terms of these variables:

 (1.3)

 (1.4)

Equations (1.3) and (1.4) are referred to as the Hamiltonian constraint and momentum constraint, respectively. The six evolution equations of second order in the time derivative can now be written as 12 equations of first order. Six of them are just (1.2), read as the equation that relates the time derivative hi j /x0 to the ‘canonical data’ (hi j , Ki j ). The other six equations, whose explicit form needs not concern us here, express the time derivative of Ki j in terms of the canonical data. Both sets of evolution equations contain, on their right-hand sides, the lapse and shift functions, whose evolution is not determined but must be specified by hand. This specification is a choice of gauge, without which one cannot determine the evolution of the physical variables (hi j , Ki j ).

The initial data problem takes now the following form:

(1) Choose a topological three manifold Σ.

(2) Find on Σ a Riemannian metric hi j and a symmetric tensor field Ki j which satisfy the constraints (1.3) and (1.4).

(3) Choose a lapse function α and a shift vector field βi , both as functions of space and time, possibly according to some convenient prescription (e.g. singularity avoiding gauges, like maximal slicing).

(4) Evolve initial data with these choices of α and βi according to the 12 equations of first order. By consistency of Einstein’s equations, the constraints will be preserved during this evolution, independent of the choices for α and βi .

The backbone of this setup is a mathematical theorem, which states that for any set of initial data, taken from a suitable function space, there is, up to a diffeomorphism, a unique maximal Einstein spacetime developing.




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.