المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

Chomsky’s three levels of adequacy
2023-12-25
Q-Chromatic Polynomial
20-4-2022
الحالات المرضية البكتيرية : الحالة الحادية والخمسون
8-9-2016
تنظيم مرتسم لمحل الحادث
16-3-2016
تقييم حجية الأدلة المادية والمعنوية
10-12-2017
His Operon
17-5-2016

Peter Ludwig Mejdell Sylow  
  
216   02:31 مساءاً   date: 22-12-2016
Author : H Freudenthal
Book or Source : Biography in Dictionary of Scientific Biography
Page and Part : ...


Read More
Date: 12-12-2016 102
Date: 7-12-2016 98
Date: 19-12-2016 167

Born: 12 December 1832 in Christiania (now Oslo), Norway

Died: 7 September 1918 in Christiania (now Oslo), Norway


Ludwig Sylow studied at Christiania University and won a mathematics contest in 1853. He then took the high school teacher examination in 1856 and, as no university post was available, taught in the town of Frederikshald from 1858 to 1898.

Sylow continued his mathematical studies however (see [2])

at first working on elliptic functions in the tradition of Abel and Jacobi, inspired by the professor of pure mathematics Ole Jacob Broch. Finding Abel's papers on the solvability of algebraic equations by radicals more interesting, Sylow was led from them (by the professor in applied mathematics, Carl Bjerknes) to Galois.

In 1861 Sylow obtained a scholarship to travel and visited Berlin and Paris. In Paris he attended lectures by Chasles on the theory of conics, by Liouville on rational mechanics and by Duhamel on the theory of limits. He says, in the report he wrote at the end of the scholarship, that he also:-

made myself acquainted with newer works, particularly in the theory of equations.

In Berlin he had useful discussions with Kronecker but was unable to attend courses by Weierstrass who was ill at the time.

In 1862 Sylow lectured at the University of Christiania, substituting for Broch. In his lectures Sylow explained Abel's and Galois's work on algebraic equations. A summary of these lectures is presented in [2]. It is worth noting that although he had not proved 'Sylow's theorems' at this time (he published them 10 years later) he did pose a question about them. After proving Cauchy's theorem that a group of order divisible by a prime p has a subgroup of order p, Sylow asks whether it can be generalised to powers of p.

Between 1873 and 1881 Sylow and Lie prepared an edition of Abel's complete work. Lie said that most of the work was done by Sylow. However Sylow's fame rests on one 10 page paper published in 1872.

In this paper Théorèmes sur les groupes de substitutions which Sylow published in Mathematische Annalen Volume 5 (pages 584 to 594) appear the three Sylow theorems. Cauchy had already proved that a group whose order is divisible by a prime p has an element of order p. Sylow proved what is perhaps the most profound result in the theory of finite groups.

If pn is the largest power of the prime p to divide the order of a group G then

  •  has subgroups of order pn,
  •  has 1 + kp such subgroups,
  • any two such subgroups are conjugate.

Almost all work on finite groups uses Sylow's theorems.

Sylow became an editor of Acta Mathematica and, in 1894, he was awarded an honorary doctorate from the university of Copenhagen.

Lie had a special chair created for Sylow at Christiania University and Sylow taught at the university from 1898.


 

  1. H Freudenthal, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830904229.html

Articles:

  1. B Birkeland, Ludwig Sylow's lectures on algebraic equations and substitutions, Christiania (Oslo), 1862: An introduction and a summary, Historia Mathematica 23 (1996), 182-199.
  2. G Casadio and G Zappa, History of the Sylow theorem and its proofs (Italian), Boll. Storia Sci. Mat. 10 (1) (1990), 29-75.
  3. R Gow, Sylow's proof of Sylow's theorem, Irish Math. Soc. Bull. 33 (1994), 55-63.
  4. H B Kragemo, Ludwig Sylow, Norsk Matematisk Tidsskrift 15 (1933), 73-99.
  5. J Lützen, The mathematical correspondence between Julius Petersen and Ludwig Sylow, in S S Demidov et al. (eds), Amphora : Festschrift for Hans Wussing on the occasion of his 65th birthday (Basel- Boston- Berlin, 1992), 439-467.
  6. W Scharlau, Die Entdeckung der Sylow-Sätze, Historia Math. 15 (1) (1988), 40-52.
  7. T Skolem, Ludwig Sylow und seine wissenschaftlichen Arbeiten, Norsk matematisk forenings skrifter 2 (1933), 14-24.
  8. E Stensholt, Ludvig Sylow and his theorems (Norwegian), Normat 31 (1) (1983), 17-29.
  9. W C Waterhouse, The early proofs of Sylow's theorem, Arch. Hist. Exact Sci. 21 (3) (1979/80), 279-290.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.