المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
دين الله ولاية المهدي
2024-11-02
الميثاق على الانبياء الايمان والنصرة
2024-11-02
ما ادعى نبي قط الربوبية
2024-11-02
وقت العشاء
2024-11-02
نوافل شهر رمضان
2024-11-02
مواقيت الصلاة
2024-11-02

شرح متن زيارة الأربعين (بِاَبي اَنْتَ وَاُمّي يَابْنَ رَسُولِ اللهِ)
2024-08-26
الشروط الواجب توافرها في المحرر الإلكتروني
15-11-2021
مراكز إنتاج البترول الرئيسية في العالم
29-1-2023
Since and For
11-6-2021
إسحاق بن جرير بن يزيد.
28-12-2016
saturation (n.)
2023-11-11


ماركوف – اندريه  
  
348   01:38 مساءاً   التاريخ: 13-9-2016
المؤلف : دعنا, عدنان (2010)
الكتاب أو المصدر : معجم علماء الرياضيات
الجزء والصفحة : 312
القسم : الرياضيات / علماء الرياضيات / علماء الرياضيات /


أقرأ أيضاً
التاريخ: 14-9-2016 351
التاريخ: 6-9-2016 362
التاريخ: 18-8-2016 347
التاريخ: 13-9-2016 349

ماركوف – اندريه

(1856 – 1922م)

عالم رياضيات روسي، ولد في ريازان وتوفي في بيتروجراد، درس قانون الاعداد الكبرى.

من أعماله :

  • وضع سلسلة ماركوف.
  • حضر نظرية الاحتمالات.
  • برهن تباينات تشيبيشيف.


 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.