المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الكيمياء
عدد المواضيع في هذا القسم 11123 موضوعاً
علم الكيمياء
الكيمياء التحليلية
الكيمياء الحياتية
الكيمياء العضوية
الكيمياء الفيزيائية
الكيمياء اللاعضوية
مواضيع اخرى في الكيمياء
الكيمياء الصناعية

Untitled Document
أبحث عن شيء أخر
غزوة الحديبية والهدنة بين النبي وقريش
2024-11-01
بعد الحديبية افتروا على النبي « صلى الله عليه وآله » أنه سحر
2024-11-01
المستغفرون بالاسحار
2024-11-01
المرابطة في انتظار الفرج
2024-11-01
النضوج الجنسي للماشية sexual maturity
2024-11-01
المخرجون من ديارهم في سبيل الله
2024-11-01

صفات الإنسان المثالي
27-1-2021
Gauss Map
21-10-2020
الوفاء عند النبي إسماعيل
9-10-2014
ما قبل الأنسولين الأول Preproinsulin
16-9-2019
رعمسيس الثالث يهاجم مدينة تونب.
2024-10-09
دعاء في الثالث من شعبان.
2023-09-15

Stability of Alkenes  
  
4386   02:36 مساءاً   date: 11-7-2016
Author : John McMurry
Book or Source : Organic Chemistry
Page and Part : 9th - p198

Stability of Alkenes

Although the cis–trans interconversion of alkene isomers does not occur spontaneously, it can often be brought about by treating the alkene with a strong acid catalyst. If we interconvert cis-2-butene with trans-2-butene and allow them to reach equilibrium, we find that they aren’t of equal stability. The trans isomer is more stable than the cis isomer by 2.8 kJ/mol (0.66 kcal/mol) at room temperature, corresponding to a 76;24 ratio.

Cis alkenes are less stable than their trans isomers because of steric strain between the two larger substituents on the same side of the double bond.

Although it’s sometimes possible to find relative stabilities of alkene isomers by establishing a cis–trans equilibrium through treatment with strong acid, a more general method is to take advantage of the fact that alkenes undergo a hydrogenation reaction to give the corresponding alkane when treated with H2 gas in the presence of a catalyst such as palladium or platinum.

Energy diagrams for the hydrogenation reactions of cis- and trans-2-butene are shown in Figure 7-5. Because cis-2-butene is less stable than trans-2-butene by 2.8 kJ/mol, the energy diagram shows the cis alkene at a higher energy level. After reaction, however, both curves are at the same energy level (butane). It therefore follows that ΔGο for reaction of the cis isomer must be larger than ΔGο for reaction of the trans isomer by 2.8 kJ/mol. In other words, more energy is released in the hydrogenation of the cis isomer than the trans isomer because the cis isomer has more energy to begin with.

Figure 7-5 Energy diagrams for hydrogenation of cis- and trans-2-butene. The cis isomer is higher in energy than the trans isomer by about 2.8 kJ/mol and therefore releases more energy in the reaction.

  If we were to measure the so-called heats of hydrogenation (ΔHο hydrog) for two double-bond isomers and find their difference, we could determine the relative stabilities of cis and trans isomers without having to measure an equilibrium position. cis-2-Butene, for instance, has ΔHο hydrog = -119 kJ/mol (228.3 kcal/mol), while trans-2-butene has ΔHο hydrog = -115 kJ/mol (227.4 kcal/mol)—a difference of 4 kJ/mol.

The 4 kJ/mol energy difference between the 2-butene isomers calculated from heats of hydrogenation agrees reasonably well with the 2.8 kJ/mol energy difference calculated from equilibrium data, but the values aren’t exactly the same for two reasons. First, there is probably some experimental error, since heats of hydrogenation are difficult to measure accurately. Second, heats of reaction and equilibrium constants don’t measure exactly the same thing.

Heats of reaction measure enthalpy changes, ΔH°, whereas equilibrium constants measure free-energy changes, ΔG°, so we might expect a slight difference between the two.

Table 7-2 Heats of Hydrogenation of Some Alkenes

Table 7-2 lists some representative data for the hydrogenation of different alkenes and shows that alkenes become more stable with increasing substitution. That is, alkenes follow the stability order:

The stability order of substituted alkenes is due to a combination of two factors. One is a stabilizing interaction between the C=C π bond and adjacent C - H σ bonds on substituents. In valence-bond language, the interaction is called hyperconjugation. In a molecular orbital description, there is a bonding MO that extends over the four-atom C=C-C-H grouping, as shown in Figure 7-6. The more substituents present on the double bond, the more hyperconjugation occurs and the more stable the alkene.

Figure 7-6 Hyperconjugation is a stabilizing interaction between the C=C π bond and adjacent C-H σ bonds on substituents.The more substituents there are, the greater the stabilization of the alkene.

  A second factor that contributes to alkene stability involves bond strengths. A bond between an sp2 carbon and an sp3 carbon is somewhat stronger than a bond between two sp3 carbons. Thus, in comparing 1-butene and 2-butene, the monosubstituted isomer has one sp3–sp3 bond and one sp3–sp2 bond, while the disubstituted isomer has two sp3–sp2 bonds. More highly substituted alkenes always have a higher ratio of sp3–sp2 bonds to sp3–sp3 bonds than less highly substituted alkenes and are therefore more stable.




هي أحد فروع علم الكيمياء. ويدرس بنية وخواص وتفاعلات المركبات والمواد العضوية، أي المواد التي تحتوي على عناصر الكربون والهيدروجين والاوكسجين والنتروجين واحيانا الكبريت (كل ما يحتويه تركيب جسم الكائن الحي مثلا البروتين يحوي تلك العناصر). وكذلك دراسة البنية تتضمن استخدام المطيافية (مثل رنين مغناطيسي نووي) ومطيافية الكتلة والطرق الفيزيائية والكيميائية الأخرى لتحديد التركيب الكيميائي والصيغة الكيميائية للمركبات العضوية. إلى عناصر أخرى و تشمل:- كيمياء عضوية فلزية و كيمياء عضوية لا فلزية.


إن هذا العلم متشعب و متفرع و له علاقة بعلوم أخرى كثيرة ويعرف بكيمياء الكائنات الحية على اختلاف أنواعها عن طريق دراسة المكونات الخلوية لهذه الكائنات من حيث التراكيب الكيميائية لهذه المكونات ومناطق تواجدها ووظائفها الحيوية فضلا عن دراسة التفاعلات الحيوية المختلفة التي تحدث داخل هذه الخلايا الحية من حيث البناء والتخليق، أو من حيث الهدم وإنتاج الطاقة .


علم يقوم على دراسة خواص وبناء مختلف المواد والجسيمات التي تتكون منها هذه المواد وذلك تبعا لتركيبها وبنائها الكيميائيين وللظروف التي توجد فيها وعلى دراسة التفاعلات الكيميائية والاشكال الأخرى من التأثير المتبادل بين المواد تبعا لتركيبها الكيميائي وبنائها ، وللظروف الفيزيائية التي تحدث فيها هذه التفاعلات. يعود نشوء الكيمياء الفيزيائية إلى منتصف القرن الثامن عشر . فقد أدت المعلومات التي تجمعت حتى تلك الفترة في فرعي الفيزياء والكيمياء إلى فصل الكيمياء الفيزيائية كمادة علمية مستقلة ، كما ساعدت على تطورها فيما بعد .