المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24

حكم الذاكرة للعدد والوقت
28-12-2015
On classifying semantic features Conclusions
2024-08-17
أبو عبد الله أحمد بن محمد بن عبيد الله بن الحسن
15-9-2020
من حكايات أهل الأندلس
2024-05-01
عقائد الامامية الاثنا عشرية في الخير والشر
6-5-2018
الاستطارة المترابطة Coherent Scattering
2024-04-18

Robert Haldane  
  
232   02:21 مساءاً   date: 9-7-2016
Author : M F Conolly
Book or Source : Eminent men of Fife
Page and Part : ...


Read More
Date: 8-7-2016 147
Date: 7-7-2016 108
Date: 7-7-2016 105

Born: 27 January 1772 in Overton, Lecropt, Perthshire, Scotland
Died: 9 March 1854 in St Andrews, Scotland


Robert Haldane's father, also called Robert Haldane, was a farmer and his mother was Margaret Kinross. Robert, their eldest son, was born in Overton (or Overtown) which is near the border between Perthshire and Stirlingshire and lies between Stirling and Dunblane. Robert attended school in Dunblane before matriculating at Glasgow University in 1787 at the age of fifteen. Although this sounds a very young age compared with when students attend university today, at this time the universities in Scotland competed with the schools to provide an education for the more able pupils.

At the University of Glasgow, Haldane took the standard course for at this time all university students basically studied the same subjects. He then went to the University of Edinburgh where he studied divinity. After this he acted as a tutor to the Robinson family of Leddriegreen House, Strathblane, and then to the Moray family of Abercairney, Perthshire. On 5 December 1797 he was licensed by the presbytery of Auchterarder. He then was appointed minister at Drumelzier in Peeblesshire and was ordained on 9 March 1807. Thirty months later he resigned this position when appointed as Regius Professor of Mathematics at the University of St Andrews. The chair had fallen vacant on the death of Nicholas Vilant on 25 May 1807 and had remained vacant until Haldane was appointed.

We have not included Haldane in this collection of biographies of mathematicians because of his expertise in mathematics. Sadly around this time appointments to the Regius Chair of Mathematics at St Andrews were not made on the strength of mathematical abilities. Rather the Church dominated appointments to the University, so that it could control the scientific views taught there, and standing in Church politics was a far more important factor than was scientific ability. In fact Haldane was appointed to the Regius Chair in preference to several other candidates who were in a different class to him as a mathematician. The two most mathematically talented of the candidates who were rejected in favour of Haldane were Wallace and Ivory. Despite this Haldane appears to have made a good teacher for Conolly writes [2] that:-

... it was well known that his mathematical drilling was the most successful ever exhibited in any of our Scottish colleges.

In 1819 Leslie, who had been the professor of mathematics at Edinburgh since 1805, resigned the chair when appointed to the more prestigious post of professor of natural philosophy. Haldane applied for the Edinburgh Chair of Mathematics which was at that time considered the most prestigious mathematics chair in Scotland. Wallace and Babbage were also applicants but Babbage stood little chance since he was an Englishman. In the end it came down to a straight contest between Haldane and Wallace; Wallace was appointed by 18 votes to 10. Another position opened up, however. When Professor George Hill, principal of St Mary's College in St Andrews (the divinity College of the University), died it was Haldane who succeeded him as principal of St Mary's College and professor of theology on 21 September 1820. Earlier that year, on 24 January, he had been elected a Fellow of the Royal Society of Edinburgh.

The positions of principal of St Mary's College and professor of theology were not well paid and it was the custom that the holder of these positions was also minister at the Holy Trinity Church in South Street, St Andrews. Haldane followed the custom and was appointed to the parish church. As principal of St Mary's College, Haldane came into conflict with Sir David Brewster, principal of the United College of St Salvator and St Leonard [1]:-

Brewster [conducted a] vendetta against Haldane, [who put up a] sturdy defence of his administration and financial management of his college.

Haldane did not publish a single item on mathematics. Indeed he only published one work which was a pamphlet on poverty in St Andrews (1841). As to his character, Conolly writes [2] that he was:-

... of unceasing charity ..., his heart was entirely in the well-being of his students.

Haldane never married. He died in St Mary's College and was buried six days later in the cathedral cemetery.


1.     P Bell, Biography in Dictionary of National Biography (Oxford, 2004).

Books:

2.     M F Conolly, Eminent men of Fife (1866).

 

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.