Read More
Date: 25-1-2016
1879
Date: 24-1-2016
1038
Date: 24-1-2016
1626
|
Born: 10 March 1622 in Zürich, Switzerland
Died: 25 May 1676 in Zürich, Switzerland
Johann Rahn's father was Hans Heinrich Rahn (born 7 July 1593, died 21 September 1669) and his mother was Ursula Escher vom Glas (born 1591, died 28 April 1663). Hans Rahn was Bailiff to Töss at the time his son Johann was born and later (1655-1669) he was Burgermeister of Zürich. At this time Töss was a town in its own right but today it is incorporated into the city of Winterthur; it is situated north east of Zürich. In fact when Johann was born his grandfather Hans Rudolf Rahn was Burgermeister of Zürich. Hans Heinrich and Ursula had four children, two boys and two girls: Hans Conrad (born 1616) was Johann's elder brother, with Regula (born 1628) and Ursula (born 1635) being his two younger sisters. Johann explains in his book that in his youth he enjoyed opportunities for study both in Switzerland and abroad. It is thought that Johann Rahn's interest in mathematics came through his uncle Johann Georg Werdmüller who was an engineer. In 1642, with Europe in the middle of the Thirty Years War, the city of Zürich decided to construct fortifications. Various proposals were evaluated and Werdmüller's proposal was accepted. This was also the time when Johann Rahn married Elisabeth Holzhalb (born in 1626); they had two children Hans Heinrich (born 9 March 1646) and Hans Rudolf (born 18 April 1669).
Johann Rahn followed in the tradition of having major roles in the administration of the city of Zürich. He [5]:-
... was appointed a 'Schützenmeister', which meant that he supervised shooting practice, and a 'Zeugherr', responsible for military supplies and artillery.
Now Rahn was certainly interested in mathematics, and he was carrying out small investigations, but it was only after he came in contact with John Pell that he developed a deeper interest and considerably more expertise. In May 1654 Pell arrived in Zürich, sent there by Oliver Cromwell on a diplomatic mission. Cromwell wanted to split the Protestant cantons of Switzerland off so they might join a Protestant League with England at its head. We do not know exactly when Rahn and Pell first came in contact but, given their respective roles, it is likely to have been soon after Pell arrived in Zürich. The first definite information is a letter which Rahn sent to Pell, dated 4 November 1654, in which he thanks Pell for sending him his publication, the two page A Refutation of Longomontanus's Pretended Quadrature of the Circle (1644). Rahn also enclosed a piece of his own mathematics.
Pell's negotiations in Zürich were long drawn out and he remained there for a number of years. In early 1657 Rahn began to receive regular tutoring from Pell. John Aubrey explained in Brief lives that Pell had told him that [3]:-
Rahn was Dr Pell's scholar at Zürich, and came to him every Friday night.
Pell, in a letter to Thomas Brancker dated 5 March 1666, describes Rahn as his 'disciple'. He writes that he kept:-
... copies of the most considerable papers that he wrought in my presence or that I gave him to transcribe.
The tutorials came to an end in early 1658 when Rahn was appointed as governor of the Kyburg district, about 20 km north east of Zürich. Once he was settled into his new role, Rahn wrote to Pell explaining that his duties as 'Landvogt' kept him very busy and this meant that he would not have time to devote to his mathematical studies. In June 1658 Pell returned to England to give his report to Cromwell only shortly before Cromwell's death. However, although Pell did not realise it, Rahn was finding more time to study mathematics than he expected from his earlier letter, for in 1659 he published his famous text Teutsche Algebra, oder algebraische Rechenkunst, zusamt ihrem Gebrauch. He writes in the Preface that [4]:-
... in the preceding summer he met at the watering place, Taynach, a nobleman, Leonard Weiss, with whom he discussed algebra and to whom he promised to prepare a work in the German language which should contain the advances due to Vieta, Descartes and others, which were at that time accessible only in the Latin and French languages. He says that he took his problems partly from Vieta, Descartes, van Schooten, Diophantus and Clavius.
Rahn was the first to use the symbol