المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الاحياء
عدد المواضيع في هذا القسم 10456 موضوعاً
النبات
الحيوان
الأحياء المجهرية
علم الأمراض
التقانة الإحيائية
التقنية الحياتية النانوية
علم الأجنة
الأحياء الجزيئي
علم وظائف الأعضاء
المضادات الحيوية

Untitled Document
أبحث عن شيء أخر
غزوة الحديبية والهدنة بين النبي وقريش
2024-11-01
بعد الحديبية افتروا على النبي « صلى الله عليه وآله » أنه سحر
2024-11-01
المستغفرون بالاسحار
2024-11-01
المرابطة في انتظار الفرج
2024-11-01
النضوج الجنسي للماشية sexual maturity
2024-11-01
المخرجون من ديارهم في سبيل الله
2024-11-01

عناية اللّه بن شرف الدين علي بن محمود القُهبَائي ( ت/ بعد 1026 هـ)
2-7-2016
علي بن سويد
10-9-2016
دور الجرائد
20-6-2021
مصباح الوميض flash tube
5-5-2019
بدء عملية الاكتساب العقلي للطفل
17-1-2016
عقوبة القتل العمد المصحوب بظرف قانوني مشدد
1-6-2021

BiP  
  
1905   02:11 صباحاً   date: 13-12-2015
Author : K. M. Flaherty, C. DeLuca-Flaherty, and D. B. McKay
Book or Source : Nature 346, 623–628
Page and Part :


Read More
Date: 30-12-2015 2481
Date: 1954
Date: 28-3-2021 2035

 BiP (Hsp70)

 

The acronym BiP stands for binding protein, and it is the only member of the hsc,hsp70 family known to occur in the lumen of the endoplasmic reticulum (ER) of mammalian cells. It was identified originally as an ER protein that increases in amount when cells are starved of glucose (1(and subsequently as a protein that binds noncovalently to the heavy (H) chains of immunoglobulins as they enter the ER lumen (2). The alternative term of “Grp78” stands for glucose-regulated protein with an apparent subunit mass of about 78 kDa. BiP is now regarded as having a general molecular chaperone role for transport in the ER lumen and for protein folding in vivo. BiP proteins are highly conserved in mammals, and there is 67% identity between mouse BiP and a homologue in the ER lumen of Saccharomyces cerevisiae called “Kar2p” (3). Like all hsc,hsp70 proteins, BiP exhibits a weak ATPase activity.

 1.Structure

BiP is encoded in a nuclear gene located on human chromosome 9q34, and cDNA from mammalian species indicate a primary translation product of 635 amino acid residues, including an 18-residue N-terminal signal sequence for ER targeting and the C-terminal tetrapeptide KDEL sequence for ER retention (GenBank accession numbers M19645 and M17169). The N and C termini contain clusters of acidic residues thought to be involved in Ca2+ binding (4). No crystal structure is available for mammalian BiP, but a structure is known for the N-terminal 45-kDa fragment of bovine hsc70, which retains the ATPase activity (5), and for the C-terminal polypeptide-binding domain of the Escherichia coli hsp70 homologue called DnaK (6). Purification protocols for BiP utilize affinity chromatography on ATP columns (7). Recombinant hamster BiP has been purified from E. coli cells (8) and is marketed by StressGen Biotechnologies Corporation, as are polyclonal antibodies to rodent BiP. In vivo BiP exists in interconvertible oligomeric and monomeric forms and is subject to phosphorylation on serine and threonine residues, as well as to ADP-ribosylation. However, only monomeric, unmodified species of BiP are found in complexes with unfolded or unassembled polypeptides (9).  

2. Function

BiP binds transiently to a range of newly synthesized secretory proteins, as they traverse the ER membrane and enter the ER lumen, and more permanently to misfolded, underglycosylated, or unassembled proteins whose transport from the ER is blocked (10); it does not bind to native, folded proteins. The binding is reversed by the addition of ATP and is believed to exert a molecular chaperone function by preventing premature folding and/or aggregation; this function is achieved by the shielding of potentially interactive hydrophobic surfaces during the time when BiP is bound. There is also evidence that the BiP homologue in yeast functions as a molecular motor protein to promote the transport of proteins across the ER membrane (11). This transport function requires the binding of the BiP homologue to the J domain of the yeast ER membrane protein Sec63p (12). Studies of the binding of synthetic peptides and bacteriophage peptide libraries show that the optimum peptide length for binding is seven to eight residues, with extensive sequence diversity but a marked preference for hydrophobic residues (13, 14). These observations support the idea that BiP binds to a wide range of sequences that normally occur inside fully folded proteins. A computer program is available that scores potential BiP binding sites in protein sequences (14); it has been used to map such sequences in immunoglobulin heavy chains to the regions that interact with light chains (15).

3.Interaction with Other Chaperones

Cytosolic hsc,hsp70 proteins in the bacterial and eukaryotic cytosol interact with other chaperones of the DnaJ (or hsp40) family that contain J domains. The yeast BiP homologue, Kar2p, interacts with two other ER proteins that contain J domains: Sec63p, a membrane protein involved in protein translocation across the ER membrane (16); and Scj1p, a lumenal protein (17). BiP also binds either sequentially or simultaneously with chaperones such as calnexin and Grp94 during the folding in the ER of proteins such as immunoglobulin light (L(chains (18), thyroglobulin (19), vesicular stomatitis virus G protein (20), and major histocompatibility complex class II chains (21). BiP is thus one component in a complex set of interactions in the ER lumen between different chaperones and polypeptide chains that are folding.

4.Induction of BiP

BiP is an abundant protein under normal growth conditions, constituting about 5% of the ER lumenal proteins, but its amount increases greatly under conditions that result in the accumulation of proteins within the ER lumen that are unable to fold correctly. These conditions include the biosynthesis of mutant chains, glucose starvation, and treatment with amino acid analogs, drugs that inhibit glycosylation, and calcium ionophores (22). The promoters of BiP genes in mammals contain several cis-acting regulatory elements required for high basal-level expression and for inducibility (22, 23).

References

1.J. Pouyssegur, R. P. C. Shiu, and I. Pastan (1977) Cell 11, 941–947

2.I. G. Haas and M. Wabl (l983) Nature 306, 387–389

3.K. Normington, K. Kohno, Y. Kozutsumi, M. J. Gething, and J. Sambrook (l989) Cell 57, 1223-1236.

4.D. R. J. Macer and G. L. E. Koch (1988) J. Cell. Sci. 91, 61–70

5.K. M. Flaherty, C. DeLuca-Flaherty, and D. B. McKay (1990) Nature 346, 623–628

6. X. Zhu, X. Zhao, W. F. Burkholder, A. Gragerov, C. M. Ogata, M. E. Gottesman, and W. A. Hendrickson (l996) Science 272, 1606–1614

7.P. J. Rowling, S. H. McLaughlin, G. S. Pollock, and R. B. Freedman (1994) Protein Exp. Purif. 5,331-336.

8.J. Wei and L. M. Hendershot (1995) J. Biol.Chem. 270, 26670–26676

9. P. J. Freiden, J. R. Gaut, and L. M. Hendershot (1992) EMBO J. 11, 63–70

10.M. J. Gething, S. Blond-Elguindi, K. Mori, and J. F. Sambrook (1994) in The Biology of Heat Shock Proteins and Molecular Chaperones (R. I. Morimoto, A. Tissieres and C. Georgopoulos, eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp. 111–135

11.S. Panzner et al. (1994) Cell 81, 561–570

12. J. L. Brodsky and R. Schekman (1993) J. Cell Biol. 123, 1355–1363

13.G. C. Flynn, J. Pohl, M. T. Flocco, and J. E. Rothman (1991) Nature 353, 726–730

14.S. Blond-Elguindi, S. E. Cwirla, W. J. Dower, R. J. Lipshutz, S. R. Sprang, J. F. Sambrook, and M. J. Gething (1993) Cell 75, 717–728

15.G. Knarr, M. J. Gething, S. Modrow, and J. Buchner (1995) J. Biol. Chem. 270, 27589–27594

16.D. Feldheim, J. Rothblatt, and R. Schekman (1992) Mol. Cell. Biol. 12, 3288–3296

17.G. Schlenstedt, S. Harris, B. Risse, R. Lill, and P. A. Silver (1995) J. Cell Biol. 129, 979–988

18.J. Melnick, J. L. Dul, and Y. Argon (1994) Nature 370, 373–375

19. P. S. Kim and P. Arvan (1995) J. Cell Biol. 128, 29–38. 

20.C. Hammond and A. Helenius (1994) Science 266, 456–458

21.M. S. Marks, R. N. Germain, and J. S. Bonifacino (1995) J. Biol. Chem. 270, 10475–10481

22.A. S. Lee (1992) Curr. Opin. Cell Biol. 4, 267–273

23. W. W. Li, L. Sistonen, R. I. Morimoto, and A. S. Lee (1994) Mol. Cell. Biol. 14, 5533–5546.




علم الأحياء المجهرية هو العلم الذي يختص بدراسة الأحياء الدقيقة من حيث الحجم والتي لا يمكن مشاهدتها بالعين المجرَّدة. اذ يتعامل مع الأشكال المجهرية من حيث طرق تكاثرها، ووظائف أجزائها ومكوناتها المختلفة، دورها في الطبيعة، والعلاقة المفيدة أو الضارة مع الكائنات الحية - ومنها الإنسان بشكل خاص - كما يدرس استعمالات هذه الكائنات في الصناعة والعلم. وتنقسم هذه الكائنات الدقيقة إلى: بكتيريا وفيروسات وفطريات وطفيليات.



يقوم علم الأحياء الجزيئي بدراسة الأحياء على المستوى الجزيئي، لذلك فهو يتداخل مع كلا من علم الأحياء والكيمياء وبشكل خاص مع علم الكيمياء الحيوية وعلم الوراثة في عدة مناطق وتخصصات. يهتم علم الاحياء الجزيئي بدراسة مختلف العلاقات المتبادلة بين كافة الأنظمة الخلوية وبخاصة العلاقات بين الدنا (DNA) والرنا (RNA) وعملية تصنيع البروتينات إضافة إلى آليات تنظيم هذه العملية وكافة العمليات الحيوية.



علم الوراثة هو أحد فروع علوم الحياة الحديثة الذي يبحث في أسباب التشابه والاختلاف في صفات الأجيال المتعاقبة من الأفراد التي ترتبط فيما بينها بصلة عضوية معينة كما يبحث فيما يؤدي اليه تلك الأسباب من نتائج مع إعطاء تفسير للمسببات ونتائجها. وعلى هذا الأساس فإن دراسة هذا العلم تتطلب الماماً واسعاً وقاعدة راسخة عميقة في شتى مجالات علوم الحياة كعلم الخلية وعلم الهيأة وعلم الأجنة وعلم البيئة والتصنيف والزراعة والطب وعلم البكتريا.