أقرأ أيضاً
التاريخ: 29-11-2015
2388
التاريخ: 20-11-2015
3786
التاريخ: 19-11-2015
1457
التاريخ: 10-11-2015
1020
|
يجسد هذا المجموع فكرة إيجاد مساحات الأشكال الهندسية الواقعة في المستوى الديكارتي والذي يكون محور السينات أحد اطرافها كما في الشكل .
وفي بعض الأحيان يكون محور الصادات كأحد أضلاعها . بطريقة تجزئتها إلى مستطيلات قواعدها أطوال .
الفترات الجزئية س]س ر-1,س ر[ والتي تساوي كل منها س ر-س ر1- وحدة طول وارتفاعها قيم الاقتران ق(س+ر)
وينسب هذا المجموع إلى الرياضي الألماني ريمان (1826 – 1866)م ويعبر عنه بالصورة .
حيث ق : اقتران حقيقي متصل على الفترة [ أ ، ب ] .
6ن : فجزئه منتظمة للفترة [ أ ، ب ] ومن مجموع ريمان انبثق التكامل المحدود وعلى الصورة .
حيث ʃ هي الحرف الأول من كلمة Sum المذكورة أعلاه .
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
اتحاد كليات الطب الملكية البريطانية يشيد بالمستوى العلمي لطلبة جامعة العميد وبيئتها التعليمية
|
|
|