أقرأ أيضاً
التاريخ: 30-12-2021
1713
التاريخ: 17-4-2017
2234
التاريخ: 11-1-2022
3205
التاريخ: 19-1-2022
1353
|
The next question is, what can we make out of laws which are nearly symmetrical? The marvelous thing about it all is that for such a wide range of important, strong phenomena—nuclear forces, electrical phenomena, and even weak ones like gravitation—over a tremendous range of physics, all the laws for these seem to be symmetrical. On the other hand, this little extra piece says, “No, the laws are not symmetrical!” How is it that nature can be almost symmetrical, but not perfectly symmetrical? What shall we make of this? First, do we have any other examples? The answer is, we do, in fact, have a few other examples. For instance, the nuclear part of the force between proton and proton, between neutron and neutron, and between neutron and proton, is all exactly the same—there is a symmetry for nuclear forces, a new one, that we can interchange neutron and proton—but it evidently is not a general symmetry, for the electrical repulsion between two protons at a distance does not exist for neutrons. So, it is not generally true that we can always replace a proton with a neutron, but only to a good approximation. Why good? Because the nuclear forces are much stronger than the electrical forces. So, this is an “almost” symmetry also. So, we do have examples in other things.
We have, in our minds, a tendency to accept symmetry as some kind of perfection. In fact, it is like the old idea of the Greeks that circles were perfect, and it was rather horrible to believe that the planetary orbits were not circles, but only nearly circles. The difference between being a circle and being nearly a circle is not a small difference, it is a fundamental change so far as the mind is concerned. There is a sign of perfection and symmetry in a circle that is not there the moment the circle is slightly off—that is the end of it—it is no longer symmetrical. Then the question is why it is only nearly a circle—that is a much more difficult question. The actual motion of the planets, in general, should be ellipses, but during the ages, because of tidal forces, and so on, they have been made almost symmetrical. Now the question is whether we have a similar problem here. The problem from the point of view of the circles is if they were perfect circles there would be nothing to explain, that is clearly simple. But since they are only nearly circles, there is a lot to explain, and the result turned out to be a big dynamical problem, and now our problem is to explain why they are nearly symmetrical by looking at tidal forces and so on.
So our problem is to explain where symmetry comes from. Why is nature so nearly symmetrical? No one has any idea why. The only thing we might suggest is something like this: There is a gate in Japan, a gate in Nikkō, which is sometimes called by the Japanese the most beautiful gate in all Japan; it was built in a time when there was great influence from Chinese art. This gate is very elaborate, with lots of gables and beautiful carving and lots of columns and dragon heads and princes carved into the pillars, and so on. But when one looks closely, he sees that in the elaborate and complex design along one of the pillars, one of the small design elements is carved upside down; otherwise, the thing is completely symmetrical. If one asks why this is, the story is that it was carved upside down so that the gods will not be jealous of the perfection of man. So, they purposely put an error in there, so that the gods would not be jealous and get angry with human beings.
We might like to turn the idea around and think that the true explanation of the near symmetry of nature is this: that God made the laws only nearly symmetrical so that we should not be jealous of His perfection!
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
اتحاد كليات الطب الملكية البريطانية يشيد بالمستوى العلمي لطلبة جامعة العميد وبيئتها التعليمية
|
|
|