المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الاحياء
عدد المواضيع في هذا القسم 10456 موضوعاً
النبات
الحيوان
الأحياء المجهرية
علم الأمراض
التقانة الإحيائية
التقنية الحياتية النانوية
علم الأجنة
الأحياء الجزيئي
علم وظائف الأعضاء
المضادات الحيوية

Untitled Document
أبحث عن شيء أخر
غزوة الحديبية والهدنة بين النبي وقريش
2024-11-01
بعد الحديبية افتروا على النبي « صلى الله عليه وآله » أنه سحر
2024-11-01
المستغفرون بالاسحار
2024-11-01
المرابطة في انتظار الفرج
2024-11-01
النضوج الجنسي للماشية sexual maturity
2024-11-01
المخرجون من ديارهم في سبيل الله
2024-11-01

خبر غدير خم
5-11-2015
تعويذ النبيّ (صلى الله عليه واله) للمرضى
12-5-2016
المنحني المميز للمصعد (للأنود) anode characteristic
6-11-2017
الامام علي في سطور
1-12-2016
العرب والتجارة.
2023-08-06
Chorda Tissue-Embryonic Spinal Column
5-1-2017

Immune Response  
  
1998   11:48 صباحاً   date: 21-10-2015
Author : Beck, Gregory, and Gail S. Habicht
Book or Source : Immunity and the Invertebrates
Page and Part :


Read More
Date: 15-10-2015 5109
Date: 16-10-2015 2411
Date: 14-10-2015 3029

Immune Response

Among the many threats organisms face are invasion and infection by bac­teria, viruses, fungi, and other foreign or disease-causing agents. All organ­isms have nonspecific defenses (or innate defenses) that provide them with some of the protection they need. This type of defense exists throughout the animal kingdom, from sponges to mammals. Vertebrate animals, how­ever, have an additional line of defense called specific immunity. Specific immunity is also called acquired immunity, adaptive immunity, or, most sim­ply, an immune response.

Overview

One characteristic of specific immunity is recognition. Immune responses begin when the body recognizes the invader as foreign. This occurs because there are molecules on foreign cells that are different from molecules on the body’s cells. Molecules that start immune responses are called antigens. The body does not usually start an immune response against its own anti­gens because cells that recognize self-antigens are deleted or inactivated. This concept is called self-tolerance and is a key characteristic that defines immune responses.

A second characteristic is specificity. Although all immune responses are similar, each time the body is invaded by a different antigen, the exact re­sponse is specific to that antigen. For example, infection with a virus that causes the common cold triggers a response by a different set of cells than infection with bacteria that causes strep throat.

A third characteristic is memory. After an antigen is cleared from the body, immunological memory allows an antigen to be recognized and re­moved more quickly if encountered again.

Antigen Presentation

Three groups of white blood cells are involved in starting an immune re­sponse. Although immune responses can occur anywhere in the body these cells are found, they primarily occur in the lymph nodes and spleen. These organs contain large numbers of antigen-presenting cells (APCs), T lym­phocytes (or T cells), and B lymphocytes (or B cells).

APCs include macrophages, dendritic cells, and B cells. These cells en­counter the foreign invader and present the invader’s antigens to a group of T cells called helper T cells (TH cells). APCs do this by first engulfing an invader and bringing it inside the cell. The APC then breaks the invader apart into its antigens and moves these antigens to its cell surface.

Receptors are cell surface proteins that can attach to antigens. Each TH cell has a different receptor, allowing each cell to recognize a different anti­gen. The APC “shows” the antigen to the TH cells until there is a match between a TH cell receptor and the antigen. The contact between the two cells stimulates the TH cell to divide rapidly. This process is called clonal selection because only the TH cells that recognize the foreign invader are selected to reproduce. Stimulated TH cells also produce chemical messen­gers called cytokines. Cytokines are made by all immune cells and control the immune response.

Immune responses occur primarily in the lymph nodes and spleen, which contain large numbers of antigen presenting cells (APCs).

Antigen Clearance

The large numbers of TH cells activate two other populations of white blood cells: cytotoxic T cells (TC cells) and B cells. Like TH cells, each TC cell and B cell has receptors that match one antigen. This is why the immune system can recognize millions of antigens with specificity. The cells with the appropriate receptor encounter the antigen, preparing them for activa­tion. They receive the final signal necessary for clonal selection from TH cells and cytokines.

Cloned TC cells attach to invaders they recognize and release a variety of chemicals that destroy the foreign cell. Because this must happen through cell-to-cell contact, it is called cell-mediated immunity (or cellular immu­nity). It is especially effective at destroying abnormal body cells, such as can­cerous cells or virus-infected cells.

Cloned B cells destroy foreign invaders differently. After activation by Th cells, B cells release proteins called antibodies. Antibodies travel through the body’s fluids and attach to antigens, targeting them for destruction by nonspecific defenses. This type of immune response is called antibody- mediated immunity (or humoral immunity). It is especially effective at de­stroying bacteria, extracellular viruses, and other antigens found in body fluids.

Immunologic Memory

A primary immune response happens the first time that the body en­counters a specific antigen. It takes several days to begin and one or two weeks to reach maximum activity. A secondary immune response occurs if the body encounters the same antigen at a later time. It takes only hours to begin and may peak within a few days. The invader is usually removed before it has a chance to cause disease. This is because some of the cloned TC cells and B cells produced during a primary immune response develop into memory cells. These cells immediately become activated if the anti­gen appears again. The complex interactions among cells described above are not necessary.

In fact, this is what happens when an individual is immunized against a disease. The vaccination (using weakened or killed pathogens) causes a primary immune response (but not the disease) and the production of memory cells that will provide protection if exposed to the disease- causing agent.

A scanning electron micrograph of a cancer cell (red in image) being attacked by tumor- infiltrating lymphocytes.

Immune System Disorders

Studying immune responses also allows scientists to understand immune system diseases. For example, hypersensitivity disorders occur when the immune system overreacts to an antigen, causing damage to healthy tis­sues. The result of this excessive antibody and TC cell activity can be relatively harmless (as with allergies to pollen, poison ivy, or molds) or deadly (as with autoimmune diseases or allergies to bee venom and an­tibiotics).

At the opposite end of the spectrum are immunodeficiency diseases, conditions in which the body does not respond effectively against foreign invaders. HIV (human immunodeficiency virus) infection causes AIDS (ac­quired immunodeficiency syndrome) by attacking TH cells. Occasionally an individual is born with a deficient immune system, but these disorders are usually acquired (for example, from radiation treatment, chemotherapy, or infection with HIV). Whatever the cause, the individual has a more diffi­cult time fighting infections.

Because immune responses exhibit the characteristics of self-tolerance, specificity, and memory, a healthy body is well equipped to remove foreign invaders and prevent recurrent infections. Age, nutrition, exercise, and stress all affect the ability of the body to fight disease.

References

Beck, Gregory, and Gail S. Habicht. “Immunity and the Invertebrates.” Scientific American 275, no. 5 (1996): 60-65.

Friedlander, Mark P., Jr., and Terry M. Phillips. The Immune System: Your Body’s Dis­ease-Fighting Army. Minneapolis, MN: Lerner Publications Company, 1998.

Gustav, J. V. “Life, Death, and the Immune System.” Scientific American 269, no. 3 (1993): 53-62.

National Institutes of Health. Understanding the Immune System. Washington, DC: National Institutes of Health, 1993.

Paul, William. E. “Infectious Diseases and the Immune System.” Scientific American 269, no. 3 (1993): 90-97.




علم الأحياء المجهرية هو العلم الذي يختص بدراسة الأحياء الدقيقة من حيث الحجم والتي لا يمكن مشاهدتها بالعين المجرَّدة. اذ يتعامل مع الأشكال المجهرية من حيث طرق تكاثرها، ووظائف أجزائها ومكوناتها المختلفة، دورها في الطبيعة، والعلاقة المفيدة أو الضارة مع الكائنات الحية - ومنها الإنسان بشكل خاص - كما يدرس استعمالات هذه الكائنات في الصناعة والعلم. وتنقسم هذه الكائنات الدقيقة إلى: بكتيريا وفيروسات وفطريات وطفيليات.



يقوم علم الأحياء الجزيئي بدراسة الأحياء على المستوى الجزيئي، لذلك فهو يتداخل مع كلا من علم الأحياء والكيمياء وبشكل خاص مع علم الكيمياء الحيوية وعلم الوراثة في عدة مناطق وتخصصات. يهتم علم الاحياء الجزيئي بدراسة مختلف العلاقات المتبادلة بين كافة الأنظمة الخلوية وبخاصة العلاقات بين الدنا (DNA) والرنا (RNA) وعملية تصنيع البروتينات إضافة إلى آليات تنظيم هذه العملية وكافة العمليات الحيوية.



علم الوراثة هو أحد فروع علوم الحياة الحديثة الذي يبحث في أسباب التشابه والاختلاف في صفات الأجيال المتعاقبة من الأفراد التي ترتبط فيما بينها بصلة عضوية معينة كما يبحث فيما يؤدي اليه تلك الأسباب من نتائج مع إعطاء تفسير للمسببات ونتائجها. وعلى هذا الأساس فإن دراسة هذا العلم تتطلب الماماً واسعاً وقاعدة راسخة عميقة في شتى مجالات علوم الحياة كعلم الخلية وعلم الهيأة وعلم الأجنة وعلم البيئة والتصنيف والزراعة والطب وعلم البكتريا.