المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الاحياء
عدد المواضيع في هذا القسم 10456 موضوعاً
النبات
الحيوان
الأحياء المجهرية
علم الأمراض
التقانة الإحيائية
التقنية الحياتية النانوية
علم الأجنة
الأحياء الجزيئي
علم وظائف الأعضاء
المضادات الحيوية

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
القيمة الغذائية للثوم Garlic
2024-11-20
العيوب الفسيولوجية التي تصيب الثوم
2024-11-20
التربة المناسبة لزراعة الثوم
2024-11-20
البنجر (الشوندر) Garden Beet (من الزراعة الى الحصاد)
2024-11-20
الصحافة العسكرية ووظائفها
2024-11-19
الصحافة العسكرية
2024-11-19

Pitch and fundamental frequency
15-6-2022
Avagadros Number
1-1-2017
آثار إخناتون الباقية(منف)
2024-06-09
عبد الاَعلى بن أعين
10-9-2016
Erdős Squarefree Conjecture
1-8-2020
الأضداد
26-7-2016

Electron Microscopy  
  
2421   10:53 صباحاً   date: 16-10-2015
Author : Berger, Dee. Journeys in Microspace
Book or Source : The Art of the Scanning Electron Microscope
Page and Part :


Read More
Date: 1-11-2015 2292
Date: 21-10-2015 2079
Date: 14-10-2015 2426

Electron Microscopy

The light microscope (LM) is limited in its resolution to about 0.25 mi- crometers. If two objects are closer together than that, they blur together and cannot be distinguished by the LM. The electron microscope (EM) overcomes this limitation and achieves resolutions down to 0.2 nanome­ters, allowing useful magnifications of biological material up to several hun­dred thousand times, and even more for nonbiological specimens. The EM achieves this by using a beam of electrons instead of visible light. Resolu­tion is governed by the wavelength of illumination, and an electron beam has a much shorter wavelength (about 0.005 nanometers) than visible light (about 400 to 750 nanometers). Electron microscopes can therefore resolve objects as small as individual protein and deoxyribonucleic acid (DNA) mol­ecules and pores in cell membranes.

The electron beam of an EM is generated by a heated tungsten wire (cathode) and accelerated down an evacuated column by a charge difference of typically 60,000 to 100,000 volts between the cathode and a grounded, mushroom-shaped anode. After passing through a hole in the center of the anode, it is focused on the specimen by electromagnets, which take the place of the glass lenses of a light microscope.

The Transmission Electron Microscope

In the transmission electron microscope (TEM), the electron beam passes through ultrathin tissue sections or small specimens, such as viruses. After passing through the specimen, the electrons strike a fluorescent screen and produce an image. The image can also be captured on photographic film or with a camera that digitizes it for storage on a computer.

Specimens for the TEM are typically fixed with aldehyde and stained with heavy metals, such as osmium, that will absorb or scatter electrons. The specimen is then dehydrated and embedded in a plastic resin. When it hardens, the resin is cut into sections 60 to 90 nanometers thick with a glass or diamond knife. Very tiny particles such as viruses and purified cell or­ganelles can be viewed without sectioning by depositing them on a thin membrane. This membrane is treated with a heavy metal “negative stain” so that the specimen stands out as a light image against a dark background.

Areas of a specimen that bind the most osmium absorb the most energy from an electron beam, and are called electron-dense regions. Areas that bind less of the stain allow electrons to pass through more freely and are described as electron-lucent regions. Electrons that pass through the lightly stained, electron-lucent regions lose relatively little energy and produce rel­atively bright spots of light when they strike the screen. The more heavily stained, electron-dense regions cause some electrons to lose energy and oth­ers to be deflected from the beam, and thus produce dimmer spots on the screen. TEM images are essentially shadows caused by accumulations of the heavy metal on cellular structures or, in the case of negative staining, on the supporting membrane.

The Scanning Electron Microscope

The scanning electron microscope (SEM) is used to examine a specimen coated with vaporized metal ions (usually gold or palladium). An electron beam sweeps across the specimen surface and discharges secondary elec­trons from the metal coating. These electrons produce an image on a mon­itor similar to a television screen. The image on the monitor can be photographed or recorded with a digital camera. The SEM cannot see through a specimen as the TEM does, but can see only the surface where the metal coating is.

The SEM is capable of less resolution and useful magnification than the TEM. However, it produces dramatic three-dimensional images that can yield more information about surface topography than the flat images usu­ally produced by TEM.

A scientist operating a scanning transmission electron microscope

Other Variations in Electron Microscopy

Both SEMs and TEMs can be equipped with a detector that monitors X rays given off by a specimen when it is bombarded by electrons. Other types of microscopes irradiate the specimen with ions or X rays and record ions, electrons, or X rays given off by the specimen. In both cases, the emitted particles and radiation yield information about the chemical composition of the specimen.

A scanning tunneling microscope measures the vertical movement of a tiny probe that is dragged over a specimen, producing a line representation of that movement. An atomic force microscope operates on a similar prin­ciple, but measures forces of attraction and repulsion between the specimen and the probe as the probe moves across the surface. In either case, multi­ple scan lines side by side produce images of the specimen surface, reveal­ing details as small as the “atomic terrain” of individual molecules.

References

Berger, Dee. Journeys in Microspace: The Art of the Scanning Electron Microscope. New York: Columbia University Press, 1995.

Gilmore, C. P. The Scanning Electron Microscope: World of the Infinitely Small. Green­wich, NY: Graphic Society, 1972.

Microworld Internet Guide to Microscopy. <mwrn.com/guide/electron_microscopy/ microscope.htm>. Includes lecture notes and guides to EM techniques and in­strumentation.

Slayter, Elizabeth M., and Henry S. Slayter. Light and Electron Microscopy. New York: Cambridge University Press, 1992.

WWW Virtual Library: Microscopy. <http://www.ou.edu/research/electron/mirror/>. Numerous links to other sites on all aspects of microscopy.

 

 




علم الأحياء المجهرية هو العلم الذي يختص بدراسة الأحياء الدقيقة من حيث الحجم والتي لا يمكن مشاهدتها بالعين المجرَّدة. اذ يتعامل مع الأشكال المجهرية من حيث طرق تكاثرها، ووظائف أجزائها ومكوناتها المختلفة، دورها في الطبيعة، والعلاقة المفيدة أو الضارة مع الكائنات الحية - ومنها الإنسان بشكل خاص - كما يدرس استعمالات هذه الكائنات في الصناعة والعلم. وتنقسم هذه الكائنات الدقيقة إلى: بكتيريا وفيروسات وفطريات وطفيليات.



يقوم علم الأحياء الجزيئي بدراسة الأحياء على المستوى الجزيئي، لذلك فهو يتداخل مع كلا من علم الأحياء والكيمياء وبشكل خاص مع علم الكيمياء الحيوية وعلم الوراثة في عدة مناطق وتخصصات. يهتم علم الاحياء الجزيئي بدراسة مختلف العلاقات المتبادلة بين كافة الأنظمة الخلوية وبخاصة العلاقات بين الدنا (DNA) والرنا (RNA) وعملية تصنيع البروتينات إضافة إلى آليات تنظيم هذه العملية وكافة العمليات الحيوية.



علم الوراثة هو أحد فروع علوم الحياة الحديثة الذي يبحث في أسباب التشابه والاختلاف في صفات الأجيال المتعاقبة من الأفراد التي ترتبط فيما بينها بصلة عضوية معينة كما يبحث فيما يؤدي اليه تلك الأسباب من نتائج مع إعطاء تفسير للمسببات ونتائجها. وعلى هذا الأساس فإن دراسة هذا العلم تتطلب الماماً واسعاً وقاعدة راسخة عميقة في شتى مجالات علوم الحياة كعلم الخلية وعلم الهيأة وعلم الأجنة وعلم البيئة والتصنيف والزراعة والطب وعلم البكتريا.