Read More
Date: 24-2-2022
1414
Date: 3-8-2016
1442
Date: 10-3-2022
1562
|
A snake is an Eulerian path in the -hypercube that has no chords (i.e., any hypercube edge joining snake vertices is a snake edge). Klee (1970) asked for the maximum length of a -snake. Klee (1970) gave the bounds
(1) |
for (Danzer and Klee 1967, Douglas 1969), as well as numerous references. Abbott and Katchalski (1988) show
(2) |
and Snevily (1994) showed that
(3) |
for , and conjectured
(4) |
for . The first few values for for , 2, ..., are 2, 4, 6, 8, 14, 26, ... (OEIS A000937).
Abbott, H. L. and Katchalski, M. "On the Snake in the Box Problem." J. Combin. Th. Ser. B 44, 12-24, 1988.
Danzer, L. and Klee, V. "Length of Snakes in Boxes." J. Combin. Th. 2, 258-265, 1967.
Douglas, R. J. "Some Results on the Maximum Length of Circuits of Spread in the -Cube." J. Combin. Th. 6, 323-339, 1969.
Emelianov, P. "Snake-in-the-Box." http://mix.nsk.ru/epg/snake.html.Evdokimov, A. A. "Maximal Length of a Chain in a Unit -Dimensional Cube." Mat. Zametki 6, 309-319, 1969.
Guy, R. K. "Unsolved Problems Come of Age." Amer. Math. Monthly 96, 903-909, 1989.
Guy, R. K. "Monthly Unsolved Problems." Amer. Math. Monthly 94, 961-970, 1989.
Guy, R. K. and Nowakowski, R. J. "Monthly Unsolved Problems, 1696-1995." Amer. Math. Monthly 102, 921-926, 1995.
Kautz, W. H. "Unit-Distance Error-Checking Codes." IRE Trans. Elect. Comput. 7, 177-180, 1958.
Klee, V. "What is the Maximum Length of a -Dimensional Snake?" Amer. Math. Monthly 77, 63-65, 1970.
Sloane, N. J. A. Sequence A000937/M0995 in "The On-Line Encyclopedia of Integer Sequences."Snevily, H. S. "The Snake-in-the-Box Problem: A New Upper Bound." Disc. Math. 133, 307-314, 1994.
Solov'jeva, F. I. "An Upper Bound for the Length of a Cycle in an -Dimensional Cube." Diskret. Analiz. 45, 1987.
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
المجمع العلمي ينظّم ندوة حوارية حول مفهوم العولمة الرقمية في بابل
|
|
|