المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الفرعون رعمسيس الثامن
2024-11-28
رعمسيس السابع
2024-11-28
: نسيآمون الكاهن الأكبر «لآمون» في «الكرنك»
2024-11-28
الكاهن الأكبر (لآمون) في عهد رعمسيس السادس (الكاهن مري باستت)
2024-11-28
مقبرة (رعمسيس السادس)
2024-11-28
حصاد البطاطس
2024-11-28

الحسن بن علي بن يقطين
29-8-2016
أنواع الاستجواب
7-12-2017
دعاء لطلب الرزق و الحاجة من الله
19-4-2016
Xenologous Genes
27-9-2020
خدمات الصحافة الالكترونية رابعاً : خدمات المساعدة والتوجيه
5-7-2020
Properties Of Human Language
7-1-2022

Graph Complement  
  
1698   02:55 صباحاً   date: 10-4-2022
Author : Clark, L. and Entringer, R
Book or Source : "Smallest Maximally Nonhamiltonian Graphs." Periodica Math. Hungarica 14
Page and Part : ...


Read More
Date: 17-5-2022 893
Date: 18-3-2022 2042
Date: 11-5-2022 977

Graph Complement

 

GraphComplement

The complement of a graph G, sometimes called the edge-complement (Gross and Yellen 2006, p. 86), is the graph , sometimes denoted G^_ or G^c (e.g., Clark and Entringer 1983), with the same vertex set but whose edge set consists of the edges not present in G (i.e., the complement of the edge set of G with respect to all possible edges on the vertex set of G). The graph sum  on a n-node graph G is therefore the complete graph K_n, as illustrated above.

A graph complement can be computed in the Wolfram Language by the command GraphComplement[g].


REFERENCES

Clark, L. and Entringer, R. "Smallest Maximally Nonhamiltonian Graphs." Periodica Math. Hungarica 14, 57-68, 1983.

Gross, J. T. and Yellen, J. Graph Theory and Its Applications, 2nd ed. Boca Raton, FL: CRC Press, 2006.

Skiena, S. "The Complement of a Graph." §3.2.3 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, p. 93, 1990.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.