تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Venn Diagram
المؤلف:
Cundy, H. and Rollett, A
المصدر:
Mathematical Models, 3rd ed. Stradbroke, England: Tarquin Pub
الجزء والصفحة:
...
10-2-2022
1578
Venn Diagram
A schematic diagram used in logic theory to depict collections of sets and represent their relationships.
The Venn diagrams on two and three sets are illustrated above. The order-two diagram (left) consists of two intersecting circles, producing a total of four regions, ,
,
, and
(the empty set, represented by none of the regions occupied). Here,
denotes the intersection of sets
and
.
The order-three diagram (right) consists of three symmetrically placed mutually intersecting circles comprising a total of eight regions. The regions labeled ,
, and
consist of members which are only in one set and no others, the three regions labelled
,
, and
consist of members which are in two sets but not the third, the region
consists of members which are simultaneously in all three, and no regions occupied represents
.
In general, an order- Venn diagram is a collection of
simple closed curves in the plane such that
1. The curves partition the plane into connected regions, and
2. Each subset of
{1,2,...,n}" src="https://mathworld.wolfram.com/images/equations/VennDiagram/Inline20.svg" style="height:22px; width:93px" /> corresponds to a unique region formed by the intersection of the interiors of the curves in
(Ruskey).
Since there are (the binomial coefficient) ways to pick
members from a total of
, the number of regions in an order
Venn diagram is
(where the region outside the diagram is included in the count).
The region of intersection of the three circles in the order three Venn diagram in the special case of the center of each being located at the intersection of the other two is a geometric shape known as a Reuleaux triangle.
The left figure at left above shows an Venn diagram due to Branko Grünbaum, while the attractive 7-fold rosette illustrated in the middle figure is an
Venn diagram called "Victoria" by Ruskey. The right figure shows a recently constructed symmetric Venn diagram on
due to Ruskey, Carla Savage, and Stan Wagon.
In Season 4 episode "Power" of the television crime drama NUMB3RS, mathematical genius Charles Eppes constructs a Venn diagram to determine suspects who match a particular description and have a history of violence.
REFERENCES
Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. Stradbroke, England: Tarquin Pub., pp. 255-256, 1989.
Grünbaum, B. "On Venn Diagrams and the Counting of Regions." College Math. J. 15, 433-435, 1984.
Grünbaum, B. "Venn Diagrams and Independent Families of Sets." Math. Mag. 48, 12-23, 1975.
Henderson, D. W. "Venn Diagrams for More Than Four Classes." Amer. Math. Monthly 70, 424-426, 1963.
Ogilvy, C. S. "Solution to Problem E 1154." Amer. Math. Monthly 62, 584-585, 1955.Ruskey, F. "A Survey of Venn Diagrams." Electronic J. Combinatorics Dynamical Survey DS5, June 18, 2005.
http://www.combinatorics.org/Surveys/#DS5.Ruskey, F. "Venn Diagrams." http://www.theory.csc.uvic.ca/~cos/inf/comb/SubsetInfo.html#Venn.
Ruskey, F.; Savage, C. D., and Wagon, S. "The Search for Simple Symmetric Venn Diagrams." Not. Amer. Math. Soc. 53, 1304-1311, 2006.
Venn, J. "On the Diagrammatic and Mechanical Representation of Propositions and Reasonings." Dublin Philos. Mag. J. Sci. 9, 1-18, 1880.
الاكثر قراءة في المنطق
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
