تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Antichain
المؤلف:
Agnew, R. P.
المصدر:
. "Minimax Functions, Configuration Functions, and Partitions." J. Indian Math. Soc. 24
الجزء والصفحة:
...
5-1-2022
2177
Antichain
Let be a finite partially ordered set, then an antichain in
is a set of pairwise incomparable elements. Antichains are also called Sperner systems in older literature (Comtet 1974).
For example, consider to be a family of subsets together with the subset relation (i.e.,
if
is a subset of
). The following table gives the antichains on the set of subsets (i.e., the power set) of the
-set
{1,2,3,...,n}" src="https://mathworld.wolfram.com/images/equations/Antichain/Inline8.gif" style="height:16px; width:81px" /> for small
.
![]() |
antichains |
1 | |
2 | |
3 | |
The number of antichains on the -set
{1,2,...,n}" src="https://mathworld.wolfram.com/images/equations/Antichain/Inline19.gif" style="height:16px; width:66px" /> for
, 1, 2, ..., are 1, 2, 5, 19, 167, ... (OEIS A014466). If the empty set is not considered a valid antichain, then these reduce to 0, 1, 4, 18, 166, ... (OEIS A007153; Comtet 1974, p. 273). The numbers obtained by adding one to OEIS A014466, 2, 3, 6, 20, 168, 7581, 7828354, ... (OEIS A000372), are also frequently encountered (Speciner 1972).
The number of antichains on the -set are equal to the number of monotonic increasing Boolean functions of
variables, and also the number of free distributive lattices with
generators (Comtet 1974, p. 273). Determining these numbers is known as Dedekind's problem, and the numbers in each of these sequences are sometimes called Dedekind numbers.
The partial order width of is the maximum cardinal number of an antichain in
. For a partial order, the size of the longest antichain is called the partial order width
. Sperner (1928) proved that the maximum size (and hence the width of the partial order) of an antichain containing
elements is
![]() |
where is a binomial coefficient and
is the floor function.
REFERENCES:
Agnew, R. P. "Minimax Functions, Configuration Functions, and Partitions." J. Indian Math. Soc. 24, 1-21, 1961.
Anderson, I. Combinatorics of Finite Sets. Oxford, England: Oxford University Press, p. 38, 1987.
Arocha, J. L. "Antichains in Ordered Sets" [Spanish]. Anales del Instituto de Matematicas de la Universidad Nacional Autonoma de Mexico 27, 1-21, 1987.
Berman, J. "Free Spectra of 3-Element Algebras." In Universal Algebra and Lattice Theory (Puebla, 1982) (Ed. R. S. Freese and O. C. Garcia). New York: Springer-Verlag, 1983.
Berman, J. and Koehler, P. "Cardinalities of Finite Distributive Lattices." Mitteilungen aus dem Mathematischen Seminar Giessen 121, 103-124, 1976.
Birkhoff, G. Lattice Theory, 3rd ed. Providence, RI: Amer. Math. Soc., p. 63, 1967.
Church, R. "Numerical Analysis of Certain Free Distributive Structures." Duke Math. J. 6, 732-733, 1940.
Church. "Enumeration by Rank of the Elements of the Free Distributive Lattice with Seven Generators." Not. Amer. Math. Soc. 12, 724, 1965.
Comtet, L. "Sperner Systems." §7.2 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 271-273, 1974.
Dedekind, R. "Über Zerlegungen von Zahlen durch ihre grössten gemeinsammen Teiler." In Gesammelte Werke, Bd. 1. pp. 103-148, 1897.
Erdős, P.; Ko, Chao; and Rado, R. "Intersection Theorems for Systems of Finite Sets." Quart. J. Math. Oxford 12, 313-320, 1961.
Gilbert, E. N. "Lattice Theoretic Properties of Frontal Switching Networks." J. Math. Phys. 33, 57-97, 1954.
Hansel, G. "Problèmes de dénombrement et d'évaluation de bornes concernant les éléments du trellis distributif libre." Publ. Inst. Statist. Univ. Paris 16, 163-294, 1967.
Harrison, M. A. Introduction to Switching and Automata Theory. New York: McGraw-Hill, p. 188, 1965.
Hilton, A. J. W. and Milner, E. C. "Some Intersection Theorems of Systems of Finite Sets." Quart. J. Math. Oxford 18, 369-384, 1967.
Katona, G. "On a Conjecture of Erdős and a Stronger Form of Sperner's Theorem." Studia Sci. Math. Hung. 1, 59-63, 1966.
Katona, G. "A Theorem of Finite Sets." In Theory of Graphs, Proceedings of the Colloquium Held at Tihany, Hungary, September 1966 (Ed. P. Erdős and G. Katona). New York: Academic Press, pp. 187-207, 1968.
Kleitman, D. "A Conjecture of Erdős-Katona on Commensurable Pairs Among Subsets of a -Set." In Theory of Graphs, Proceedings of the Colloquium Held at Tihany, Hungary, September 1966 (Ed. P. Erdős and G. Katona). New York: Academic Press, pp. 215-218, 1968.
Kleitman, D. "On Dedekind's Problem: The Number of Monotone Boolean Functions." Proc. Amer. Math. Soc. 21, 677-682, 1969.
Kleitman, D. and Markowsky, G. "On Dedekind's Problem: The Number of Isotone Boolean Functions. II." Trans. Amer. Math. Soc. 213, 373-390, 1975.
Lunnon, W. F. "The IU Function: The Size of a Free Distributive Lattice." In Combinatorial Mathematics and Its Applications: Proceedings of a conference held at the Mathematical Institute, Oxford, from 7-10 July, 1969 (Ed. D. J. A. Welsh). New York: Academic Press, pp. 173-181, 1971.
Mešalkin, L. D. "A Generalization of Sperner's Theorem on the Number of Subsets of a Finite Set." Theory Prob. 8, 203-204, 1963.
Milner, E. C. "A Combinatorial Theorem on Systems of Sets." J. London Math. Soc. 43, 204-206, 1968.
Muroga, S. Threshold Logic and Its Applications. New York: Wiley, p. 38 and 214, 1971.
Rivière, N. M. "Recursive Formulas on Free Distributive Lattices." J. Combin. Th. 5, 229-234, 1968.
Shapiro. "On the Counting Problem for Monotone Boolean Functions." Comm. Pure Appl. Math. 23, 299-312, 1970.
Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, p. 241, 1990.
Sloane, N. J. A. Sequences A006826/M2469, A007153/M3551, and A014466 in "The On-Line Encyclopedia of Integer Sequences."
Speciner, M. Item 18 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 10, Feb. 1972. http://www.inwap.com/pdp10/hbaker/hakmem/boolean.html#item18.
Sperner, E. "Ein Satz über Untermengen einer endlichen Menge." Math. Z. 27, 544-548, 1928.
Ward, M. "Note on the Order of the Free Distributive Lattice." Bull. Amer. Math. Soc. 52, 423, 1946.
Yamamoto, K. "Logarithmic Order of Free Distributive Lattice." J. Math. Soc. Japan 6, 343-353, 1954.
الاكثر قراءة في نظرية المجموعات
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
