Inclusion-Exclusion Principle
المؤلف:
Andrews, G. E
المصدر:
Number Theory. Philadelphia, PA: Saunders
الجزء والصفحة:
...
29-12-2021
1683
Inclusion-Exclusion Principle
Let
denote the cardinal number of set
, then it follows immediately that
 |
(1)
|
where
denotes union, and
denotes intersection. The more general statement
 |
(2)
|
also holds, and is known as Boole's inequality or one of the Bonferroni inequalities.
This formula can be generalized in the following beautiful manner. Let
{A_i}_(i=1)^p" src="https://mathworld.wolfram.com/images/equations/Inclusion-ExclusionPrinciple/Inline5.gif" style="height:19px; width:69px" /> be a p-system of
consisting of sets
, ...,
, then
 |
(3)
|
where the sums are taken over k-subsets of
. This formula holds for infinite sets
as well as finite sets (Comtet 1974, p. 177).
The principle of inclusion-exclusion was used by Nicholas Bernoulli to solve the recontres problem of finding the number of derangements (Bhatnagar 1995, p. 8).
For example, for the three subsets
{2,3,7,9,10}" src="https://mathworld.wolfram.com/images/equations/Inclusion-ExclusionPrinciple/Inline11.gif" style="height:15px; width:116px" />,
{1,2,3,9}" src="https://mathworld.wolfram.com/images/equations/Inclusion-ExclusionPrinciple/Inline12.gif" style="height:15px; width:94px" />, and
{2,4,9,10}" src="https://mathworld.wolfram.com/images/equations/Inclusion-ExclusionPrinciple/Inline13.gif" style="height:15px; width:101px" /> of
{1,2,...,10}" src="https://mathworld.wolfram.com/images/equations/Inclusion-ExclusionPrinciple/Inline14.gif" style="height:15px; width:101px" />, the following table summarizes the terms appearing the sum.
# |
term |
set |
length |
1 |
 |
{" src="https://mathworld.wolfram.com/images/equations/Inclusion-ExclusionPrinciple/Inline16.gif" style="height:15px; width:5px" />2, 3, 7, 9, 10 }" src="https://mathworld.wolfram.com/images/equations/Inclusion-ExclusionPrinciple/Inline17.gif" style="height:15px; width:5px" /> |
5 |
|
 |
{" src="https://mathworld.wolfram.com/images/equations/Inclusion-ExclusionPrinciple/Inline19.gif" style="height:15px; width:5px" />1, 2, 3, 9 }" src="https://mathworld.wolfram.com/images/equations/Inclusion-ExclusionPrinciple/Inline20.gif" style="height:15px; width:5px" /> |
4 |
|
 |
{" src="https://mathworld.wolfram.com/images/equations/Inclusion-ExclusionPrinciple/Inline22.gif" style="height:15px; width:5px" />2, 4, 9, 10 }" src="https://mathworld.wolfram.com/images/equations/Inclusion-ExclusionPrinciple/Inline23.gif" style="height:15px; width:5px" /> |
4 |
2 |
 |
{" src="https://mathworld.wolfram.com/images/equations/Inclusion-ExclusionPrinciple/Inline25.gif" style="height:15px; width:5px" />2, 3, 9 }" src="https://mathworld.wolfram.com/images/equations/Inclusion-ExclusionPrinciple/Inline26.gif" style="height:15px; width:5px" /> |
3 |
|
 |
{" src="https://mathworld.wolfram.com/images/equations/Inclusion-ExclusionPrinciple/Inline28.gif" style="height:15px; width:5px" />2, 9, 10 }" src="https://mathworld.wolfram.com/images/equations/Inclusion-ExclusionPrinciple/Inline29.gif" style="height:15px; width:5px" /> |
3 |
|
 |
{" src="https://mathworld.wolfram.com/images/equations/Inclusion-ExclusionPrinciple/Inline31.gif" style="height:15px; width:5px" />2, 9 }" src="https://mathworld.wolfram.com/images/equations/Inclusion-ExclusionPrinciple/Inline32.gif" style="height:15px; width:5px" /> |
2 |
3 |
 |
{" src="https://mathworld.wolfram.com/images/equations/Inclusion-ExclusionPrinciple/Inline34.gif" style="height:15px; width:5px" />2, 9 }" src="https://mathworld.wolfram.com/images/equations/Inclusion-ExclusionPrinciple/Inline35.gif" style="height:15px; width:5px" /> |
2 |
is therefore equal to
, corresponding to the seven elements
{1,2,3,4,7,9,10}" src="https://mathworld.wolfram.com/images/equations/Inclusion-ExclusionPrinciple/Inline38.gif" style="height:15px; width:212px" />.
REFERENCES:
Andrews, G. E. Number Theory. Philadelphia, PA: Saunders, pp. 139-140, 1971.
Andrews, G. E. q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra. Providence, RI: Amer. Math. Soc., p. 60, 1986.
Bhatnagar, G. Inverse Relations, Generalized Bibasic Series, and Their U(n) Extensions. Ph.D. thesis. Ohio State University, 1995.
Comtet, L. Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 176-177, 1974.
da Silva. "Proprietades geraes." J. de l'Ecole Polytechnique, cah. 30.
de Quesada, C. A. "Daniel Augusto da Silva e la theoria delle congruenze binomie." Ann. Sci. Acad. Polytech. Porto, Coīmbra 4, 166-192, 1909.
Dohmen, K. Improved Bonferroni Inequalities with Applications: Inequalities and Identities of Inclusion-Exclusion Type. Berlin: Springer-Verlag, 2003.
Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, p. 66, 2003.
Knuth, D. E. The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 3rd ed. Reading, MA: Addison-Wesley, pp. 178-179, 1997.
Sylvester, J. "Note sur la théorème de Legendre." Comptes Rendus Acad. Sci. Paris 96, 463-465, 1883.
الاكثر قراءة في نظرية المجموعات
اخر الاخبار
اخبار العتبة العباسية المقدسة