 
					
					
						Cantor Diagonal Method					
				 
				
					
						 المؤلف:  
						Courant, R. and Robbins, H.
						 المؤلف:  
						Courant, R. and Robbins, H.					
					
						 المصدر:  
						What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press
						 المصدر:  
						What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 23-12-2021
						23-12-2021
					
					
						 1595
						1595					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Cantor Diagonal Method
The Cantor diagonal method, also called the Cantor diagonal argument or Cantor's diagonal slash, is a clever technique used by Georg Cantor to show that the integers and reals cannot be put into a one-to-one correspondence (i.e., the uncountably infinite set of real numbers is "larger" than the countably infinite set of integers). However, Cantor's diagonal method is completely general and applies to any set as described below.
Given any set  , consider the power set
, consider the power set  consisting of all subsets of
 consisting of all subsets of  . Cantor's diagonal method can be used to show that
. Cantor's diagonal method can be used to show that  is larger than
 is larger than  , i.e., there exists an injection but no bijection from
, i.e., there exists an injection but no bijection from  to
 to  . Finding an injection is trivial, as can be seen by considering the function from
. Finding an injection is trivial, as can be seen by considering the function from  to
 to  which maps an element
 which maps an element  of
 of  to the singleton set
 to the singleton set ![<span style=]() {s}" src="https://mathworld.wolfram.com/images/equations/CantorDiagonalMethod/Inline12.gif" style="height:16px; width:14px" />. Suppose there exists a bijection
{s}" src="https://mathworld.wolfram.com/images/equations/CantorDiagonalMethod/Inline12.gif" style="height:16px; width:14px" />. Suppose there exists a bijection  from
 from  to
 to  and consider the subset
 and consider the subset  of
 of  consisting of the elements
 consisting of the elements  of
 of  such that
 such that  does not contain
 does not contain  . Since
. Since  is a bijection, there must exist an element
 is a bijection, there must exist an element  of
 of  such that
 such that  . But by the definition of
. But by the definition of  , the set
, the set  contains
 contains  if and only if
 if and only if  does not contain
 does not contain  . This yields a contradiction, so there cannot exist a bijection from
. This yields a contradiction, so there cannot exist a bijection from  to
 to  .
.
Cantor's diagonal method applies to any set  , finite or infinite. If
, finite or infinite. If  is a finite set of cardinality
 is a finite set of cardinality  , then
, then  has cardinality
 has cardinality  , which is larger than
, which is larger than  . If
. If  is an infinite set, then
 is an infinite set, then  is a bigger infinite set. In particular, the cardinality
 is a bigger infinite set. In particular, the cardinality  of the real numbers
 of the real numbers  , which can be shown to be isomorphic to
, which can be shown to be isomorphic to  , where
, where  is the set of natural numbers, is larger than the cardinality
 is the set of natural numbers, is larger than the cardinality  of
 of  . By applying this argument infinitely many times to the same infinite set, it is possible to obtain an infinite hierarchy of infinite cardinal numbers.
. By applying this argument infinitely many times to the same infinite set, it is possible to obtain an infinite hierarchy of infinite cardinal numbers.
REFERENCES:
Courant, R. and Robbins, H. What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 81-83, 1996.
Hoffman, P. The Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical Truth. New York: Hyperion, pp. 220-223, 1998.
Penrose, R. The Emperor's New Mind: Concerning Computers, Minds, and the Laws of Physics. Oxford, England: Oxford University Press, pp. 84-85, 1989.
				
				
					
					 الاكثر قراءة في  نظرية المجموعات
					 الاكثر قراءة في  نظرية المجموعات					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة