Read More
Date: 28-11-2021
959
Date: 27-9-2021
1796
Date: 6-10-2021
1015
|
Eukaryotic DNA Replication : Telomeres
Telomeres are complexes of DNA plus proteins (collectively known as shelterin) located at the ends of linear chromosomes. They maintain the structural integrity of the chromosome, preventing attack by nucleases, and allow repair systems to distinguish a true end from a break in dsDNA. In
humans, telomeric DNA consists of several thousand tandem repeats of a noncoding hexameric sequence, AGGGTT, base-paired to a complementary region containing C and A. The G-rich strand is longer than its C-rich complement, leaving ssDNA a few hundred nucleotides in length at the 3′-end. The single-stranded region is thought to fold back on itself, forming a loop structure that is stabilized by protein.
1. Telomere shortening: Eukaryotic cells face a special problem in replicating the ends of their linear DNA molecules. Following removal of the RNA primer from the extreme 5′-end of the lagging strand, there is no way to fill in the remaining gap with DNA. Consequently, in most normal human somatic cells, telomeres shorten with each successive cell division. Once telomeres are shortened beyond some critical length, the cell is no longer able to divide and is said to be senescent. In germ cells and stem cells, as well as in cancer cells, telomeres do not shorten and the cells do not senesce. This is a result of the ribonucleoprotein telomerase, which maintains telomeric length in these cells.
2. Telomerase: This complex contains a protein (Tert) that acts as a reverse transcriptase and a short piece of RNA (Terc) that acts as a template. The C-rich RNA template base-pairs with the G-rich, single-stranded 3′-end of telomeric DNA (Fig. 30.24). The reverse transcriptase uses the RNA template to synthesize DNA in the usual 5′→3′ direction, extending the already longer 3′-end. Telomerase then translocates to the newly synthesized end, and the process is repeated. Once the G-rich strand has been lengthened, primase activity of DNA pol α can use it as a template to synthesize an RNA primer. The primer is extended by DNA pol α and then removed by nucleases.
Figure 1: Mechanism of action of telomerase, a ribonucleoprotein. T = thymine; A = adenine; C = cytosine; G = guanine; pol = polymerase.
Telomeres may be viewed as mitotic clocks in that their length in most cells is inversely related to the number of times the cells have divided. The study of telomeres provides insight into the biology of normal aging, diseases of premature aging (the progerias), and cancer.
|
|
"عادة ليلية" قد تكون المفتاح للوقاية من الخرف
|
|
|
|
|
ممتص الصدمات: طريقة عمله وأهميته وأبرز علامات تلفه
|
|
|
|
|
المجمع العلمي للقرآن الكريم يقيم جلسة حوارية لطلبة جامعة الكوفة
|
|
|