المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
تـشكيـل اتـجاهات المـستـهلك والعوامـل المؤثـرة عليـها
2024-11-27
النـماذج النـظريـة لاتـجاهـات المـستـهلـك
2024-11-27
{اصبروا وصابروا ورابطوا }
2024-11-27
الله لا يضيع اجر عامل
2024-11-27
ذكر الله
2024-11-27
الاختبار في ذبل الأموال والأنفس
2024-11-27



التطابق الزمني Timing Coincidences: عمر النصف للمستويات النووية  
  
1786   01:55 صباحاً   التاريخ: 12-12-2021
المؤلف : د/ محمد شحادة الدغمة و أ.د/ علي محمد جمعة
الكتاب أو المصدر : الفيزياء النووية
الجزء والصفحة : ج2 ص 76
القسم : علم الفيزياء / الفيزياء الحديثة / الفيزياء النووية / مواضيع عامة في الفيزياء النووية /


أقرأ أيضاً
التاريخ: 12-12-2021 11075
التاريخ: 16-12-2021 1615
التاريخ: 25-3-2017 1879
التاريخ: 15-1-2022 1549

التطابق الزمني Timing Coincidences: عمر النصف للمستويات النووية

من المناسب أحياناً دراسة ما إذا كانت أحداث معينة تتزامن مع بعضها بعضاً أو ذات ترابط زمني معين. فقد يقع حدث (أو تفاعل معين) ثم يتبعه حدث آخر. ومن ثم فإن هاذين الحدثين متطابقين زمنياً. ولكننا هنا سنبين كيف يمكن استخدام هذه التقنية للحصول على معلومات عن النواة. وذلك عند دراسة التطابق الزمني بين أشعة γ أو ما يعرف: بتطابق γ - γ (Coincidences γ - γ). حيث نستخدم كاشفين يقيس كل منهما أشعة γ معينة (ذات طاقة معينة) وقد تستخدم كاشفات الجوامد أو الإيماض ثم تقوم دائرة تطابق زمني معينة بقياس التوزيع الزمني بين شعاعي أشعة γ المقاسين بواسطة الكاشفين.

يبين الشكل (1) منظومة تطابق زمني γ - γ باستخدام كاشف (Ge(Li وكاشف وميض بلاستيكي لقياس عمر النصف لمستوى إثارة نووي. تسمى هذه المنظومة المطياف الزمني Timing spectrometer الذي يتكون من جزئين رئيسين).

1- الجزء الأول: يشكل ما يسمى بجزء التوقيت السريع حيث يتم الحصول على طيف زمني للمصدر المشع والذي يبين العلاقات الزمنية بين جميع أشعة γ المترابطة زمنياً. والتي تتبع إحداها الأخرى Cascade أي المتلاحقة زمنياً.

الشكل (1)

2- أما الجزء الثاني: فيتعلق بمنتخب الطاقة وهو الجزء الذي يضع شرطاً خاصاً بطاقة شعاع γ ومن ثم مستوى الإثارة النووي المعين المطلوب قياس عمر النصف له. ثم تؤخذ هذه النبضة من خلال وحدة تطابق زمني وتغذى إلى دخل التطابق الزمني في المحلل متعدد القنوات (أنظر الشكل 1) ومن ثم يظهر الطيف الزمني الخاص بمستوى الإثارة النووي المعين على المحلل.

وينبغي أولاً ضبط المطياف ويستغرق ذلك وقتاً وخبرة كافية، إذا أننا نقيس أعمار النصف لمستويات تقع في مدى ns1. ومن ثم يشكل ضبط المنظومة أهم جزء في العمل. ثم نقوم بعد ذلك بتعيين زمن التمايز للجهاز Resolution Time باستخدام مصدر 06Co. ومن ثم الحصول على الطيف الزمني للكوبلت -60 والذي يسمى بالطيف اللحظي  Prompt Curve وذلك لأن شعاعي γ المتلاحقين هما 1.17، 1.33 م.أ.ف. حيث نجد أن الكوبلت 60 يتحلل إلى Ni—60 بإطلاق شعاع β حيث تنشأ نواة النيكل — 60 في مستوى الإثارة 2.5 م. أ. ف، ويتحلل هذا المستوى على مرحلتين حيث يطلق أولاً إشعاع γ بطاقة 1.17 م. أ. ف. وينتقل إلى المستوى 1.33 م.أ.ف. ثم يتحلل هذا الأخير إلى مستوى الاستقرار الأرضي. ومن ثم يمثل إشعاع γ بطاقة 1.17 م. أ. ف. نبضة البدء (Start) أما إشعاع γ بطاقة 1.33 م. أ. ف. فيمثل نبضة الإيقاف (Stop). وقد وجد أن عمر النصف للمستوى 1.33 م. أ. ف. يساوي 0.7 بيكوثانية وبالتالي يمكن اعتبار هذا المستوى مستوى لحظي يستخدم لقياس تمايز الجهاز. ويتم ذلك بتعيين الاتساع الكلي للطيف عند منتصف القيمة (FWHM). وكلما كان تمايز الجهاز صغيراً زادت دقة القياس(1) يبين الشكل (2) الطيف الزمني للكوبلت - 60 وتعيين عمر النصف للبوزيترون في اللوسيت المغلف لمصدر صوديوم - 22 . ويستخدم غالباً مصدر صوديوم - 22 لاختبار أداء (وضبط) المطياف الزمني. وذلك لأن شعاعي الإفناء (0.511 م.أ.ف.) ينطلقان في اتجاهين متضادين تماماً. ومن ثم يمكن ضبط الزاوية بين الكاشفين بحيث تساوي 180. كما نجد أن الصوديوم يتحلل بإطلاق أشعة بتا (والأسر الإلكتروني) حيث تنتج نواة النيون مثارة عند المستوى 274. 1 م. أ. ف. الذي يتحلل بدوره إلى مستوى الاستقرار الأرضي مطلقاً أشعة γ بطاقة تساوي 1.274 م. ا. ف. وبعمر نصف يساوي 3.7 بيكوثانية. وبالتالي فإن تكون المستوى 1.274 م. أ. ف. يمثل انبعاث البوزيترون (+β) ومن ثم فإن هذا الشعاع يمثل شارة البدء Start في جزء التوقيت السريع في المطياف الزمني. أما إشارة (نبضة) الإيقاف فتنتج عندما يحدث إفناء للبوزيترون ينتج عنه انطلاق شعاعي γ بطاقة 0.511 م.أ.ف. وبالتالي يمثل هذا الشعاع شارة الإيقاف 5100 في جزء التوقيت السريع في المطياف الزمني، أما شرط الطاقة فيتم عن طريق منتخب الطاقة حيث يختار خط أشعة γ (0.511 م. أ. ف) باستخدام كاشف (Ge(li أما طيف الطاقة الناتج عن كاشف البلاستيك فيختار منه حافة كمبتون الخاصة بشعاع الإفناء. يبين الشكل (2) التوزيع الزمني لعمر النصف للبوزيترون. ويمكن قياس قيمة هذا العمر باستخدام تقنية الميل حيث يتبين لنا من الشكل أن عمر النصف للبوزيترون يساوي (1.66ns).

الشكل (2)




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.