المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الاحياء
عدد المواضيع في هذا القسم 10456 موضوعاً
النبات
الحيوان
الأحياء المجهرية
علم الأمراض
التقانة الإحيائية
التقنية الحياتية النانوية
علم الأجنة
الأحياء الجزيئي
علم وظائف الأعضاء
المضادات الحيوية

Untitled Document
أبحث عن شيء أخر
غزوة الحديبية والهدنة بين النبي وقريش
2024-11-01
بعد الحديبية افتروا على النبي « صلى الله عليه وآله » أنه سحر
2024-11-01
المستغفرون بالاسحار
2024-11-01
المرابطة في انتظار الفرج
2024-11-01
النضوج الجنسي للماشية sexual maturity
2024-11-01
المخرجون من ديارهم في سبيل الله
2024-11-01

Current research issues
2024-06-09
ان للقلوب إقبالا وإدبارا
4-2-2021
تأسيس الاصل عند الشك في الحجية
4-9-2016
DNA Sequences Evolve by Mutation and a Sorting Mechanism
15-3-2021
الحكم المستنصر
22-5-2022
مؤرخي الشيعة
2-5-2020

Overall Nitrogen Metabolism  
  
1128   11:25 صباحاً   date: 2-11-2021
Author : Denise R. Ferrier
Book or Source : Lippincott Illustrated Reviews: Biochemistry
Page and Part :


Read More
Date: 27-9-2021 1744
Date: 7-12-2021 992
Date: 6-10-2021 971

Overall Nitrogen Metabolism

 

Amino acid catabolism is part of the larger process of the metabolism of nitrogen-containing molecules. Nitrogen enters the body in a variety of compounds present in food, the most important being amino acids contained in dietary protein. Nitrogen leaves the body as urea, ammonia, and other products derived from amino acid metabolism (such as creatinine). The role of body proteins in these transformations involves two important concepts: the amino acid pool and protein turnover.

A. Amino acid pool

Free amino acids are present throughout the body, such as in cells, blood,  and the extracellular fluids. For the purpose of this discussion, envision all of these amino acids as if they belonged to a single entity, called the amino acid pool. This pool is supplied by three sources: 1) amino acids provided by the degradation of endogenous (body) proteins, most of which are reutilized; 2) amino acids derived from exogenous (dietary) protein; and 3) nonessential amino acids synthesized from simple intermediates of metabolism (Fig. 1). Conversely, the amino acid pool is depleted by three routes: 1) synthesis of body protein, 2) consumption of amino acids as precursors of essential nitrogen-containing small molecules, and 3)  conversion of amino acids to glucose, glycogen, fatty acids, and ketone bodies or oxidation to CO2 + H2O (see Fig. 1). Although the amino acid pool is small (comprising ~90–100 g of amino acids) in comparison with the amount of protein in the body (~12 kg in a 70-kg man), it is conceptually at the center of whole-body nitrogen metabolism.

 

Figure 1:  Sources and fates of amino acids. [Note: Nitrogen from amino acid degradation is released as ammonia, which is converted to urea and excreted.]  CO2 = carbon dioxide.

In healthy, well-fed individuals, the input to the amino acid pool is balanced by the output. That is, the amount of amino acids contained in the pool is constant. The amino acid pool is said to be in a steady state, and the individual is said to be in nitrogen balance.

B. Protein turnover

Most proteins in the body are constantly being synthesized and then degraded (turned over), permitting the removal of abnormal or unneeded proteins. For many proteins, regulation of synthesis determines the concentration of protein in the cell, with protein degradation assuming a minor role. For other proteins, the rate of synthesis is constitutive (that is,  essentially constant), and cellular levels of the protein are controlled by selective degradation.

1. Rate: In healthy adults, the total amount of protein in the body remains constant because the rate of protein synthesis is just sufficient to replace the protein that is degraded. This process, called protein turnover, leads to the hydrolysis and resynthesis of 300–400 g of body protein each day.

The rate of protein turnover varies widely for individual proteins. Short lived proteins (for example, many regulatory proteins and misfolded proteins) are rapidly degraded, having half-lives measured in minutes or hours. Long-lived proteins, with half-lives of days to weeks, constitute the majority of proteins in the cell. Structural proteins, such as collagen,  are metabolically stable and have half-lives measured in months or years.

2. Protein degradation: There are two major enzyme systems responsible for degrading proteins: the ATP-dependent ubiquitin (Ub)–proteasome system of the cytosol and the ATP-independent degradative enzyme system of the lysosomes. Proteasomes selectively degrade damaged or short-lived proteins. Lysosomes use acid hydrolases  to nonselectively degrade intracellular proteins (autophagy) and extracellular proteins (heterophagy), such as plasma proteins, that are taken into the cell by endocytosis.

a. Ubiquitin–proteasome system: Proteins selected for degradation by the cytosolic ubiquitin–proteasome system are first modified by the covalent attachment of Ub, a small, globular, nonenzymic protein that is highly conserved across eukaryotic species. Ubiquitination of the target substrate occurs through isopeptide linkage of the α-carboxyl group of the C-terminal glycine of Ub to the ε-amino group of a lysine in the protein substrate by a three-step, enzyme-catalyzed, ATP dependent process. [Note: Enzyme 1 (E1, an activating enzyme)  activates Ub, which is then transferred to E2 (a conjugating enzyme).

E3 (a ligase) identifies the protein to be degraded and interacts with E2-Ub. There are many more E3 proteins than there are E1 or E2.]  The consecutive addition of four or more Ub molecules to the target protein generates a polyubiquitin chain. Proteins tagged with Ub chains are recognized by a large, barrel-shaped, macromolecular,  proteolytic complex called a proteasome (Fig. 2). The proteasome unfolds, de-ubiquitinates, and cuts the target protein into fragments that are then further degraded by cytosolic proteases to amino acids, which enter the amino acid pool. The Ub is recycled. It is noteworthy that the selective degradation of proteins by the ubiquitin–proteosome complex  (unlike simple hydrolysis by proteolytic enzymes) requires ATP hydrolysis.

Figure 2:  The ubiquitin–proteasome degradation pathway of proteins. AMP = adenosine monophosphate; PPi = pyrophosphate.

b. Degradation signals: Because proteins have different half-lives, it is clear that protein degradation cannot be random but, rather, is influenced by some structural aspect of the protein that serves as a degradation signal, which is recognized and bound by an E3. The half-life of a protein is also influenced by the amino (N)-terminal residue,  the so-called N-end rule, and ranges from minutes to hours.

Destabilizing N-terminal amino acids include arginine and post-translationally modified amino acids such as acetylated alanine. In contrast, serine is a stabilizing amino acid. Additionally, proteins rich in sequences containing proline, glutamate, serine, and threonine  (called PEST sequences after the one-letter designations for these amino acids) are rapidly ubiquitinated and degraded and, therefore,  have short half-lives.




علم الأحياء المجهرية هو العلم الذي يختص بدراسة الأحياء الدقيقة من حيث الحجم والتي لا يمكن مشاهدتها بالعين المجرَّدة. اذ يتعامل مع الأشكال المجهرية من حيث طرق تكاثرها، ووظائف أجزائها ومكوناتها المختلفة، دورها في الطبيعة، والعلاقة المفيدة أو الضارة مع الكائنات الحية - ومنها الإنسان بشكل خاص - كما يدرس استعمالات هذه الكائنات في الصناعة والعلم. وتنقسم هذه الكائنات الدقيقة إلى: بكتيريا وفيروسات وفطريات وطفيليات.



يقوم علم الأحياء الجزيئي بدراسة الأحياء على المستوى الجزيئي، لذلك فهو يتداخل مع كلا من علم الأحياء والكيمياء وبشكل خاص مع علم الكيمياء الحيوية وعلم الوراثة في عدة مناطق وتخصصات. يهتم علم الاحياء الجزيئي بدراسة مختلف العلاقات المتبادلة بين كافة الأنظمة الخلوية وبخاصة العلاقات بين الدنا (DNA) والرنا (RNA) وعملية تصنيع البروتينات إضافة إلى آليات تنظيم هذه العملية وكافة العمليات الحيوية.



علم الوراثة هو أحد فروع علوم الحياة الحديثة الذي يبحث في أسباب التشابه والاختلاف في صفات الأجيال المتعاقبة من الأفراد التي ترتبط فيما بينها بصلة عضوية معينة كما يبحث فيما يؤدي اليه تلك الأسباب من نتائج مع إعطاء تفسير للمسببات ونتائجها. وعلى هذا الأساس فإن دراسة هذا العلم تتطلب الماماً واسعاً وقاعدة راسخة عميقة في شتى مجالات علوم الحياة كعلم الخلية وعلم الهيأة وعلم الأجنة وعلم البيئة والتصنيف والزراعة والطب وعلم البكتريا.