

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Normal Sum Distribution
المؤلف:
المرجع الالكتروني للمعلوماتيه
المصدر:
www.almerja.com
الجزء والصفحة:
...
12-4-2021
2300
Normal Sum Distribution
Amazingly, the distribution of a sum of two normally distributed independent variates
and
with means and variances
and
, respectively is another normal distribution
![]() |
(1) |
which has mean
![]() |
(2) |
and variance
![]() |
(3) |
By induction, analogous results hold for the sum of
normally distributed variates.
An alternate derivation proceeds by noting that
![]() |
![]() |
(4) |
|
![]() |
![]() |
![]() |
(5) |
where
is the characteristic function and
is the inverse Fourier transform, taken with parameters
.
More generally, if
is normally distributed with mean
and variance
, then a linear function of
,
![]() |
(6) |
is also normally distributed. The new distribution has mean
and variance
, as can be derived using the moment-generating function
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
which is of the standard form with
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
For a weighted sum of independent variables
![]() |
(14) |
the expectation is given by
![]() |
![]() |
![]() |
(15) |
![]() |
![]() |
![]() |
(16) |
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
![]() |
![]() |
![]() |
(19) |
Setting this equal to
![]() |
(20) |
gives
![]() |
![]() |
![]() |
(21) |
![]() |
![]() |
![]() |
(22) |
Therefore, the mean and variance of the weighted sums of
random variables are their weighted sums.
If
are independent and normally distributed with mean 0 and variance
, define
![]() |
(23) |
where
obeys the orthogonality condition
![]() |
(24) |
with
the Kronecker delta. Then
are also independent and normally distributed with mean 0 and variance
.
Cramer showed the converse of this result in 1936, namely that if
and
are independent variates and
has a normal distribution, then both
and
must be normal. This result is known as Cramer's theorem.
الاكثر قراءة في الاحتمالات و الاحصاء
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

![P_(X+Y)(u)=1/(sqrt(2pi(sigma_x^2+sigma_y^2)))e^(-[u-(mu_x+mu_y)]^2/[2(sigma_x^2+sigma_y^2)]),](https://mathworld.wolfram.com/images/equations/NormalSumDistribution/NumberedEquation1.gif)






















































قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)