المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الاحياء
عدد المواضيع في هذا القسم 10456 موضوعاً
النبات
الحيوان
الأحياء المجهرية
علم الأمراض
التقانة الإحيائية
التقنية الحياتية النانوية
علم الأجنة
الأحياء الجزيئي
علم وظائف الأعضاء
المضادات الحيوية

Untitled Document
أبحث عن شيء أخر
دين الله ولاية المهدي
2024-11-02
الميثاق على الانبياء الايمان والنصرة
2024-11-02
ما ادعى نبي قط الربوبية
2024-11-02
وقت العشاء
2024-11-02
نوافل شهر رمضان
2024-11-02
مواقيت الصلاة
2024-11-02

القاسم بن الحسن
4-4-2016
تاريخ دولة لجش
24-5-2019
أنت عملاق هذه الحياة
23-8-2022
Lamina
11-11-2018
التطور التاريخي للأراضي العسكرية
16-8-2022
الجاحظ
7-11-2014

Rolling Circles Are Used to Replicate Phage Genomes  
  
1512   05:01 مساءً   date: 7-4-2021
Author : JOCELYN E. KREBS, ELLIOTT S. GOLDSTEIN and STEPHEN T. KILPATRICK
Book or Source : LEWIN’S GENES XII
Page and Part :


Read More
Date: 24-12-2015 2033
Date: 30-11-2015 1857
Date: 16-5-2016 2946

Rolling Circles Are Used to Replicate Phage Genomes


KEY CONCEPT
- The ФX174 A protein is a cis-acting relaxase that generates single-stranded circles from the tail produced by rolling circle replication.

Replication by rolling circles is common among bacteriophages. Unit genomes can be cleaved from the displaced tail, generating monomers that can be packaged into phage particles or used for further replication cycles. FIGURE 1 provides a more detailed view of a phage replication cycle that is centered on the rolling circle.

FIGURE 1. ФX174 RF DNA is a template for synthesizing singlestranded viral circles. The A protein remains attached to the same genome through indefinite revolutions, each time nicking the origin on the viral (+) strand and transferring to the new 5′ end. At the same time, the released viral strand is circularized.
Phage ФX174 consists of a single-stranded circular DNA known as the plus (+) strand. A complementary strand, called the minus (−) strand, is synthesized. This action generates the duplex circle shown at the top of Figure 1, which is then replicated by a rolling circle mechanism.
The duplex circle is converted to a covalently closed form, which becomes supercoiled. A protein encoded by the phage genome, the A protein, nicks the (+) strand of the duplex DNA at a specific site that defines the origin for replication. After nicking the origin, the A protein remains connected to the 5′ end that it generates, while the 3′ end is extended by DNA polymerase.
The structure of the DNA plays an important role in this reaction, for the DNA can be nicked only when it is negatively supercoiled (i.e., wound around its axis in space in the opposite sense from the handedness of the double helix; supercoiling is discussed in the chapter titled Genes Are DNA and Encode RNAs and Polypeptides). The A protein is able to bind to a single-stranded decamer fragment of DNA that surrounds the site of the nick. This suggests that the supercoiling is needed to assist the formation of a single-stranded region that provides the A protein with its binding site. (An enzymatic activity in which a protein cleaves duplex DNA and binds to a released 5′ end is sometimes called a relaxase.)
The nick generates a 3′–OH end and a 5′–phosphate end (covalently attached to the A protein), both of which have roles to play in ФX174 replication.
Using the rolling circle, the 3′–OH end of the nick is extended into a new chain. The chain is elongated around the circular (−) strand template until it reaches the starting point and displaces the origin.
Now the A protein functions again. It remains connected with the rolling circle as well as to the 5′ end of the displaced tail, and is therefore in the vicinity as the growing point returns past the origin. Thus, the same A protein is available again to recognize the origin and nick it, now attaching to the end generated by the new nick. The cycle can be repeated indefinitely.
Following this nicking event, the displaced single (+) strand is freed as a circle. The A protein is involved in the circularization. In fact, the joining of the 3′ and 5′ ends of the (+) strand product is accomplished by the A protein as part of the reaction by which it is released at the end of one cycle of replication, and starts another cycle.
The A protein has an unusual property that may be connected with these activities. It is cis-acting in vivo. (This behavior is not reproduced in vitro, as can be seen from its activity on any DNA template in a cell-free system.) The implication is that in vivo the A protein synthesized by a particular genome can attach only to the DNA of that genome. Researchers do not know how this is accomplished. Its activity in vitro, however, shows how it remains associated with the same parental (−) strand template. The A protein has two active sites; this might allow it to cleave the “new” origin while still retaining the “old” origin. It then ligates the displaced strand into a circle.
The displaced (+) strand can follow either of two fates after circularization. During the replication phase of viral infection, it might be used as a template to synthesize the complementary (−) strand.
The duplex circle can then be used as a rolling circle to generate more progeny. During phage morphogenesis, the displaced (+) strand is packaged into the phage virion.




علم الأحياء المجهرية هو العلم الذي يختص بدراسة الأحياء الدقيقة من حيث الحجم والتي لا يمكن مشاهدتها بالعين المجرَّدة. اذ يتعامل مع الأشكال المجهرية من حيث طرق تكاثرها، ووظائف أجزائها ومكوناتها المختلفة، دورها في الطبيعة، والعلاقة المفيدة أو الضارة مع الكائنات الحية - ومنها الإنسان بشكل خاص - كما يدرس استعمالات هذه الكائنات في الصناعة والعلم. وتنقسم هذه الكائنات الدقيقة إلى: بكتيريا وفيروسات وفطريات وطفيليات.



يقوم علم الأحياء الجزيئي بدراسة الأحياء على المستوى الجزيئي، لذلك فهو يتداخل مع كلا من علم الأحياء والكيمياء وبشكل خاص مع علم الكيمياء الحيوية وعلم الوراثة في عدة مناطق وتخصصات. يهتم علم الاحياء الجزيئي بدراسة مختلف العلاقات المتبادلة بين كافة الأنظمة الخلوية وبخاصة العلاقات بين الدنا (DNA) والرنا (RNA) وعملية تصنيع البروتينات إضافة إلى آليات تنظيم هذه العملية وكافة العمليات الحيوية.



علم الوراثة هو أحد فروع علوم الحياة الحديثة الذي يبحث في أسباب التشابه والاختلاف في صفات الأجيال المتعاقبة من الأفراد التي ترتبط فيما بينها بصلة عضوية معينة كما يبحث فيما يؤدي اليه تلك الأسباب من نتائج مع إعطاء تفسير للمسببات ونتائجها. وعلى هذا الأساس فإن دراسة هذا العلم تتطلب الماماً واسعاً وقاعدة راسخة عميقة في شتى مجالات علوم الحياة كعلم الخلية وعلم الهيأة وعلم الأجنة وعلم البيئة والتصنيف والزراعة والطب وعلم البكتريا.