

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
de Moivre-Laplace Theorem
المؤلف:
de la Vallée-Poussin, C.
المصدر:
"Demonstration nouvelle du théorème de Bernoulli." Ann. Soc. Sci. Bruxelles 31
الجزء والصفحة:
...
1-4-2021
1959
de Moivre-Laplace Theorem
The asymptotic form of the
-step Bernoulli distribution with parameters
and
is given by
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
(Papoulis 1984, p. 105).
Uspensky (1937) defines the de Moivre-Laplace theorem as the fact that the sum of those terms of the binomial series of
for which the number of successes
falls between
and
is approximately
![]() |
(3) |
where
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
More specifically, Uspensky (1937, p. 129) showed that
![]() |
(7) |
where the error term satisfies
![]() |
(8) |
for
(Uspensky 1937, p. 129; Kenney and Keeping 1951, pp. 36-37). Note that Kenney and Keeping (1951, p. 37) give the slightly smaller denominator
.
A corollary states that the probability that
successes in
trials will differ from the expected value
by more than
is
, where
![]() |
(9) |
with
![]() |
(10) |
(Kenney and Keeping 1951, p. 39). Uspensky (1937, p. 130) showed that
is given by
![]() |
(11) |
where
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
and the error term satisfies
![]() |
(15) |
for
(Uspensky 1937, p. 130; Kenney and Keeping 1951, pp. 40-41).
REFERENCES:
de la Vallée-Poussin, C. "Demonstration nouvelle du théorème de Bernoulli." Ann. Soc. Sci. Bruxelles 31, 219-236, 1907.
de Moivre, A. Miscellanea analytica. Lib. 5, 1730.
de Moivre, A. The Doctrine of Chances, or, a Method of Calculating the Probabilities of Events in Play, 3rd ed. New York: Chelsea, 2000. Reprint of 1756 3rd ed. Original ed. published 1716.
Kenney, J. F. and Keeping, E. S. "The DeMoivre-Laplace Theorem" and "Simple Sampling of Attributes." §2.10 and 2.11 in Mathematics of Statistics, Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, pp. 36-41, 1951.
Laplace, P. Théorie analytiques de probabilités, 3ème éd., revue et augmentée par l'auteur. Paris: Courcier, 1820. Reprinted in Œuvres complètes de Laplace, tome 7. Paris: Gauthier-Villars, pp. 280-285, 1886.
Mirimanoff, D. "Le jeu de pile ou face et les formules de Laplace et de J. Eggenberger." Commentarii Mathematici Helvetici 2, 133-168, 1930.
Papoulis, A. Probability, Random Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, 1984.
Uspensky, J. V. "Approximate Evaluation of Probabilities in Bernoullian Case." Ch. 7 in Introduction to Mathematical Probability. New York: McGraw-Hill, pp. 119-138, 1937.
الاكثر قراءة في الاحتمالات و الاحصاء
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

















![Q=1/(sqrt(2pi))int_(t_1)^(t_2)e^(-t^2/2)dt+(q-p)/(6sqrt(2pi)sigma)[(1-t^2)e^(-t^2/2)]_(t_1)^(t_2)+Omega,](https://mathworld.wolfram.com/images/equations/deMoivre-LaplaceTheorem/NumberedEquation2.gif)














قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)