المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الخرشوف Artichoke (من الزراعة الى الحصاد)
2024-11-24
ميعاد زراعة الجزر
2024-11-24
أثر التأثير الاسترجاعي على المناخ The Effects of Feedback on Climate
2024-11-24
عمليات الخدمة اللازمة للجزر
2024-11-24
العوامل الجوية المناسبة لزراعة الجزر
2024-11-24
الجزر Carrot (من الزراعة الى الحصاد)
2024-11-24

تلين العظام والكساح Rickets & Osteomalacis :
29-1-2021
الصحافة ومدى تأثيرها في الرأي العام
2024-11-13
Vowel + nasal sequences
20-7-2022
فروع الجغرافيا الحيوية - الجغرافيا النباتية
26/12/2022
معنى كلمة بنن‌
1-2-2016
لا يطاع الله من حيث يعصى
31-8-2020

Wiener Sausage  
  
1219   05:26 مساءً   date: 25-3-2021
Author : Bolthausen, E.
Book or Source : "On the Volume of the Wiener Sausage." Ann. Prob. 18
Page and Part : ...


Read More
Date: 2-3-2021 1195
Date: 11-2-2021 1389
Date: 3-5-2021 1880

Wiener Sausage

The Wiener sausage of radius a>0 is the random process defined by

 W^a(t)= union _(0<=s<=t)B_a(beta(s))

where here, beta(t) is the standard Brownian motion in R^d for t>=0 and B_a(x) denotes the open ball of radius a centered at x in R^d. Named after Norbert Wiener, the term is also intended to describe W^a(t) visually: Indeed, for a given Brownian motion beta(t)W^a(t) is essentially a sausage-like tube of radius a having beta(t) as its central line.


REFERENCES:

Bolthausen, E. "On the Volume of the Wiener Sausage." Ann. Prob. 18, 1576-1582, 1990.

van den Berg, M.; Bolthausen, E.; and den Hollander, F. "On the Volume of the Intersection of Two Wiener Sausages." Ann. Math. 159, 741-783, 2004.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.