 
					
					
						Borel-Cantelli Lemma					
				 
				
					
						 المؤلف:  
						Hazewinkel, M. (Managing Ed.).
						 المؤلف:  
						Hazewinkel, M. (Managing Ed.).					
					
						 المصدر:  
						Encyclopaedia of Mathematics: An Updated and Annotated Translation of the Soviet "Mathematical Encyclopaedia." Dordrecht, Netherlands: Reidel
						 المصدر:  
						Encyclopaedia of Mathematics: An Updated and Annotated Translation of the Soviet "Mathematical Encyclopaedia." Dordrecht, Netherlands: Reidel					
					
						 الجزء والصفحة:  
						pp. 435-436
						 الجزء والصفحة:  
						pp. 435-436					
					
					
						 7-3-2021
						7-3-2021
					
					
						 2145
						2145					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Borel-Cantelli Lemma
Let ![<span style=]() {A_n}_(n=0)^infty" src="https://mathworld.wolfram.com/images/equations/Borel-CantelliLemma/Inline1.gif" style="height:17px; width:44px" /> be a sequence of events occurring with a certain probability distribution, and let
{A_n}_(n=0)^infty" src="https://mathworld.wolfram.com/images/equations/Borel-CantelliLemma/Inline1.gif" style="height:17px; width:44px" /> be a sequence of events occurring with a certain probability distribution, and let  be the event consisting of the occurrence of a finite number of events
 be the event consisting of the occurrence of a finite number of events  for
 for  , 2, .... Then the probability of an infinite number of the
, 2, .... Then the probability of an infinite number of the  occurring is zero if
 occurring is zero if
Equivalently, in the extreme case of  for all
 for all  , the probability that none of them occurs is 1 and, in particular, the probability of
, the probability that none of them occurs is 1 and, in particular, the probability of  that a finite number occur is also 1.
 that a finite number occur is also 1.
REFERENCES:
Hazewinkel, M. (Managing Ed.). Encyclopaedia of Mathematics: An Updated and Annotated Translation of the Soviet "Mathematical Encyclopaedia." Dordrecht, Netherlands: Reidel, pp. 435-436, 1988.
				
				
					
					 الاكثر قراءة في  الاحتمالات و الاحصاء
					 الاكثر قراءة في  الاحتمالات و الاحصاء 					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة