Read More
Date: 3-10-2020
512
Date: 25-12-2020
836
Date: 9-1-2021
934
|
Let and be two sets of complex numbers linearly independent over the rationals. Then at least one of
is transcendental (Waldschmidt 1979, p. 3.5). This theorem is due to Siegel, Schneider, Lang, and Ramachandra. The corresponding statement obtained by replacing with is called the four exponentials conjecture and remains unproven.
REFERENCES:
Finch, S. R. "Powers of 3/2 Modulo One." §2.30.1 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 194-199, 2003.
Ramachandra, K. "Contributions to the Theory of Transcendental Numbers. I, II." Acta Arith. 14, 65-78, 1967-68.
Ramachandra, K. and Srinivasan, S. "A Note to a Paper: 'Contributions to the Theory of Transcendental Numbers. I, II' by Ramachandra on Transcendental Numbers." Hardy-Ramanujan J. 6, 37-44, 1983.
Waldschmidt, M. Transcendence Methods. Queen's Papers in Pure and Applied Mathematics, No. 52. Kingston, Ontario, Canada: Queen's University, 1979.
Waldschmidt, M. "On the Transcendence Method of Gel'fond and Schneider in Several Variables." In New Advances in Transcendence Theory (Ed. A. Baker). Cambridge, England: Cambridge University Press, pp. 375-398, 1988.
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
قسم شؤون المعارف ينظم دورة عن آليات عمل الفهارس الفنية للموسوعات والكتب لملاكاته
|
|
|