المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
القيمة الغذائية للثوم Garlic
2024-11-20
العيوب الفسيولوجية التي تصيب الثوم
2024-11-20
التربة المناسبة لزراعة الثوم
2024-11-20
البنجر (الشوندر) Garden Beet (من الزراعة الى الحصاد)
2024-11-20
الصحافة العسكرية ووظائفها
2024-11-19
الصحافة العسكرية
2024-11-19

أبرز التوجّهات الأدبيّة واللغويّة
2024-10-11
دودة القصب الصغيرة
28-11-2021
THE CANDELA
10-9-2020
عبد الرحيم بن محمد علي التستري.
26-7-2016
النفي
25-4-2018
Aqua species of beryllium
21-1-2018

Mersenne Prime  
  
718   01:23 صباحاً   date: 18-1-2021
Author : Bateman, P. T.; Selfridge, J. L.; and Wagstaff, S. S.
Book or Source : "The New Mersenne Conjecture." Amer. Math. Monthly 96
Page and Part : ...


Read More
Date: 4-1-2021 635
Date: 16-1-2021 1632
Date: 13-11-2019 936

Mersenne Prime

A Mersenne prime is a Mersenne number, i.e., a number of the form

 M_n=2^n-1,

that is prime. In order for M_n to be prime, n must itself be prime. This is true since for composite n with factors r and sn=rs. Therefore, 2^n-1 can be written as 2^(rs)-1, which is a binomial number that always has a factor (2^r-1).

The first few Mersenne primes are 3, 7, 31, 127, 8191, 131071, 524287, 2147483647, ... (OEIS A000668) corresponding to indices n=2, 3, 5, 7, 13, 17, 19, 31, 61, 89, ... (OEIS A000043).

Mersenne primes were first studied because of the remarkable properties that every Mersenne prime corresponds to exactly one perfect number. L. Welsh maintains an extensive bibliography and history of Mersenne numbers.

MersennePrimeDensity

It has been conjectured that there exist an infinite number of Mersenne primes. Fitting a line through the origin to the asymptotic number of Mersenne primes M_p with p<=lnx for the first 51 (known) Mersenne primes gives a best-fit line with c(x)=2.50508lnx, illustrated above. If the line is not restricted to pass through the origin, the best fit is (-2.12+/-0.48)+(2.66+/-0.04)lnx. It has been conjectured (without any particularly strong evidence) that the constant is given by e^gammasqrt(2)=2.518..., where gamma is the Euler-Mascheroni constant (Havil 2003, p. 116; Caldwell), a result related to Wagstaff's conjecture

Mersenne postmark

However, finding Mersenne primes is computationally very challenging. For example, the 1963 discovery that M_(11213) is prime was heralded by a special postal meter design, illustrated above, issued in Urbana, Illinois.

G. Woltman has organized a distributed search program via the Internet known as GIMPS (Great Internet Mersenne Prime Search) in which hundreds of volunteers use their personal computers to perform pieces of the search. The efforts of GIMPS volunteers make this distributed computing project the discoverer of all of the Mersenne primes discovered since late 1996. As of Sep. 24, 2020, GIMPS participants have tested and verified all exponents below 53310629 and tested all exponents below 91765997 at least once (GIMPS).

The table below gives the index p of known Mersenne primes (OEIS A000043) M_p, together with the number of digits, discovery years, and discoverer. A similar table has been compiled by C. Caldwell. Note that sequential indexing of "the" nth Mersenne prime is tentative for n=48 until all exponents between M_(47) and M_(48) (namely up to 57885161) have been verified to be composite (and therefore also tentative for the other known Mersenne primes M_(49) through M_(51)).

# p digits year discoverer (reference) value
1 2 1 antiquity   3
2 3 1 antiquity   7
3 5 2 antiquity   31
4 7 3 antiquity   127
5 13 4 1461 Reguis (1536), Cataldi (1603) 8191
6 17 6 1588 Cataldi (1603) 131071
7 19 6 1588 Cataldi (1603) 524287
8 31 10 1750 Euler (1772) 2147483647
9 61 19 1883 Pervouchine (1883), Seelhoff (1886) 2305843009213693951
10 89 27 1911 Powers (1911) 618970019642690137449562111
11 107 33 1913 Powers (1914) 162259276829213363391578010288127
12 127 39 1876 Lucas (1876) 170141183460469231731687303715884105727
13 521 157 Jan. 30, 1952 Robinson (1954) 68647976601306097149...12574028291115057151
14 607 183 Jan. 30, 1952 Robinson (1954) 53113799281676709868...70835393219031728127
15 1279 386 Jun. 25, 1952 Robinson (1954) 10407932194664399081...20710555703168729087
16 2203 664 Oct. 7, 1952 Robinson (1954) 14759799152141802350...50419497686697771007
17 2281 687 Oct. 9, 1952 Robinson (1954) 44608755718375842957...64133172418132836351
18 3217 969 Sep. 8, 1957 Riesel 25911708601320262777...46160677362909315071
19 4253 1281 Nov. 3, 1961 Hurwitz 19079700752443907380...76034687815350484991
20 4423 1332 Nov. 3, 1961 Hurwitz 28554254222827961390...10231057902608580607
21 9689 2917 May 11, 1963 Gillies (1964) 47822027880546120295...18992696826225754111
22 9941 2993 May 16, 1963 Gillies (1964) 34608828249085121524...19426224883789463551
23 11213 3376 Jun. 2, 1963 Gillies (1964) 28141120136973731333...67391476087696392191
24 19937 6002 Mar. 4, 1971 Tuckerman (1971) 43154247973881626480...36741539030968041471
25 21701 6533 Oct. 30, 1978 Noll and Nickel (1980) 44867916611904333479...57410828353511882751
26 23209 6987 Feb. 9, 1979 Noll (Noll and Nickel 1980) 40287411577898877818...36743355523779264511
27 44497 13395 Apr. 8, 1979 Nelson and Slowinski 85450982430363380319...44867686961011228671
28 86243 25962 Sep. 25, 1982 Slowinski 53692799550275632152...99857021709433438207
29 110503 33265 Jan. 28, 1988 Colquitt and Welsh (1991) 52192831334175505976...69951621083465515007
30 132049 39751 Sep. 20, 1983 Slowinski 51274027626932072381...52138578455730061311
31 216091 65050 Sep. 6, 1985 Slowinski 74609310306466134368...91336204103815528447
32 756839 227832 Feb. 19, 1992 Slowinski and Gage 17413590682008709732...02603793328544677887
33 859433 258716 Jan. 10, 1994 Slowinski and Gage 12949812560420764966...02414267243500142591
34 1257787 378632 Sep. 3, 1996 Slowinski and Gage 41224577362142867472...31257188976089366527
35 1398269 420921 Nov. 12, 1996 Joel Armengaud/GIMPS 81471756441257307514...85532025868451315711
36 2976221 895832 Aug. 24, 1997 Gordon Spence/GIMPS 62334007624857864988...76506256743729201151
37 3021377 909526 Jan. 27, 1998 Roland Clarkson/GIMPS 12741168303009336743...25422631973024694271
38 6972593 2098960 Jun. 1, 1999 Nayan Hajratwala/GIMPS 43707574412708137883...35366526142924193791
39 13466917 4053946 Nov. 14, 2001 Michael Cameron/GIMPS 92494773800670132224...30073855470256259071
40 20996011 6320430 Nov. 17, 2003 Michael Shafer/GIMPS 12597689545033010502...94714065762855682047
41 24036583 7235733 May 15, 2004 Josh Findley/GIMPS 29941042940415717208...67436921882733969407
42 25964951 7816230 Feb. 18, 2005 Martin Nowak/GIMPS 12216463006127794810...98933257280577077247
43 30402457 9152052 Dec. 15, 2005 Curtis Cooper and Steven Boone/GIMPS 31541647561884608093...11134297411652943871
44 32582657 9808358 Sep. 4, 2006 Curtis Cooper and Steven Boone/GIMPS 12457502601536945540...11752880154053967871
45 37156667 11185272 Sep. 6, 2008 Hans-Michael Elvenich/GIMPS 20225440689097733553...21340265022308220927
46 42643801 12837064 Jun. 12, 2009 Odd Magnar Strindmo/GIMPS 16987351645274162247...84101954765562314751
47 43112609 12978189 Aug. 23, 2008 Edson Smith/GIMPS 31647026933025592314...80022181166697152511
48? 57885161 17425170 Jan. 25, 2013 Curtis Cooper/GIMPS 58188726623224644217...46141988071724285951
49? 74207281 22338618 Jan. 7, 2016 Curtis Cooper/GIMPS 30037641808460618205...87010073391086436351
50? 77232917 23249425 Dec. 26, 2017 Jonathan Pace/GIMPS 46733318335923109998...82730618069762179071
51? 82589933 24862048 Dec. 7, 2018 Patrick Laroche/GIMPS 14889444574204132554...37951210325217902591

Trial division is often used to establish the compositeness of a potential Mersenne prime. This test immediately shows M_p to be composite for p=11, 23, 83, 131, 179, 191, 239, and 251 (with small factors 23, 47, 167, 263, 359, 383, 479, and 503, respectively). A much more powerful primality test for M_p is the Lucas-Lehmer test.

If n=3 (mod 4) is a prime, then 2n+1 divides M_n iff 2n+1 is prime. It is also true that prime divisors of 2^p-1 must have the form 2kp+1 where k is a positive integer and simultaneously of either the form 8n+1 or 8n-1 (Uspensky and Heaslet 1939).

A prime factor p of a Mersenne number M_q=2^q-1 is a Wieferich prime iff p^2|2^q-1. Therefore, Mersenne primes are not Wieferich primes.


REFERENCES:

Bateman, P. T.; Selfridge, J. L.; and Wagstaff, S. S. "The New Mersenne Conjecture." Amer. Math. Monthly 96, 125-128, 1989.

Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 66, 1987.

Beiler, A. H. Ch. 3 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. New York: Dover, 1966.

Bell, E. T. Mathematics: Queen and Servant of Science. Washington, DC: Math. Assoc. Amer., 1987.

Caldwell, C. "Mersenne Primes: History, Theorems and Lists." http://www.utm.edu/research/primes/mersenne/.

Caldwell, C. K. "The Top Twenty: Mersenne Primes." http://www.utm.edu/research/primes/lists/top20/Mersenne.html.

Caldwell, C. "Where Is the Next Mersenne Prime?" http://primes.utm.edu/notes/faq/NextMersenne.html.

Colquitt, W. N. and Welsh, L. Jr. "A New Mersenne Prime." Math. Comput. 56, 867-870, 1991.

Conway, J. H. and Guy, R. K. "Mersenne's Numbers." In The Book of Numbers. New York: Springer-Verlag, pp. 135-137, 1996.

Devlin, K. "World's Largest Prime." FOCUS: Newsletter Math. Assoc. Amer. 17, 1, Dec. 1997.

Dickson, L. E. History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Dover, p. 13, 2005.

Flannery, S. and Flannery, D. In Code: A Mathematical Journey. London: Profile Books, pp. 47-51, 2000.

Gardner, M. The Sixth Book of Mathematical Games from Scientific American. Chicago, IL: University of Chicago Press, p. 85, 1984.

Gardner, M. "Patterns in Primes Are a Clue to the Strong Law of Small Numbers." Sci. Amer. 243, 18-28, Dec. 1980.

Gillies, D. B. "Three New Mersenne Primes and a Statistical Theory." Math Comput. 18, 93-97, 1964.

GIMPS. "GIMPS Milestones Report." http://v5www.mersenne.org/report_milestones/.

Great Internet Prime Search: GIMPS. Finding World World Primes Since 1996. "List of Known Mersenne Prime Numbers." http://www.mersenne.org/primes/.

Guy, R. K. "Mersenne Primes. Repunits. Fermat Numbers. Primes of Shape k·2^n+2 [sic]." §A3 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 8-13, 1994.

Haghighi, M. "Computation of Mersenne Primes Using a Cray X-MP." Intl. J. Comput. Math. 41, 251-259, 1992.

Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 14-16, 1979.

Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, 2003.

Kraitchik, M. "Mersenne Numbers and Perfect Numbers." §3.5 in Mathematical Recreations. New York: W. W. Norton, pp. 70-73, 1942.

Kravitz, S. and Berg, M. "Lucas' Test for Mersenne Numbers 6000<p<7000." Math. Comput. 18, 148-149, 1964.

Lehmer, D. H. "On Lucas's Test for the Primality of Mersenne's Numbers." J. London Math. Soc. 10, 162-165, 1935.

Leyland, P. http://research.microsoft.com/~pleyland/factorization/factors/mersenne.txt.

Mersenne, M. Cogitata Physico-Mathematica. 1644.

Noll, C. and Nickel, L. "The 25th and 26th Mersenne Primes." Math. Comput. 35, 1387-1390, 1980.

Powers, R. E. "The Tenth Perfect Number." Amer. Math. Monthly 18, 195-196, 1911.

Powers, R. E. "Note on a Mersenne Number." Bull. Amer. Math. Soc. 40, 883, 1934.

Robinson, R. M. "Mersenne and Fermat Numbers." Proc. Amer. Math. Soc. 5, 842-846, 1954.

Shankland, S. "Cooperative Computing Finds Top Prime Number." ZDNet News: Hardware. Dec. 2, 2003. http://zdnet.com.com/2100-1103_2-5112827.html?tag=zdfd.newsfeed.

Sloane, N. J. A. Sequences A000043/M0672 and A000668/M2696 in "The On-Line Encyclopedia of Integer Sequences."

Slowinski, D. "Searching for the 27th Mersenne Prime." J. Recreat. Math. 11, 258-261, 1978-1979.

Tuckerman, B. "The 24th Mersenne Prime." Proc. Nat. Acad. Sci. USA 68, 2319-2320, 1971.

Uhler, H. S. "A Brief History of the Investigations on Mersenne Numbers and the Latest Immense Primes." Scripta Math. 18, 122-131, 1952.

Uspensky, J. V. and Heaslet, M. A. Elementary Number Theory. New York: McGraw-Hill, 1939.

Welsh, L. "Marin Mersenne." http://www.utm.edu/research/primes/mersenne/LukeMirror/mersenne.htm.

Welsh, L. "Mersenne Numbers & Mersenne Primes Bibliography." http://www.utm.edu/research/primes/mersenne/LukeMirror/biblio.htm.

Whitehouse, D. "Number Takes Prime Position." December 5, 2001. BBC News online. http://news.bbc.co.uk/hi/english/sci/tech/newsid_1693000/1693364.stm.

Woltman, G. "The GREAT Internet Mersenne Prime Search." http://www.mersenne.org/prime.htm.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.