تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Rascal Triangle
المؤلف:
Anggoro, A.; Liu, E.; and Tulloch, A.
المصدر:
"The Rascal Triangle." College Math. J. 41
الجزء والصفحة:
...
10-1-2021
854
Rascal Triangle
The rascal triangle is a number triangle with numbers arranged in staggered rows such that
![]() |
(1) |
The published study of this triangle seems to have originated relatively recently, having been added to Sloane's Online Encyclopedia of Integer Sequences (OEIS) as recently as 2002--where it was cataloged as [t]riangle with diagonal congruent to
mod
--and having been the subject of scholarly mathematical publication as recently as 2010 (Anggoro et al. 2010). The triangle is sometimes written without capitalization as the rascal triangle.
One common point of exposition among literature regarding the rascal triangle is its similarity to Pascal's triangle. Indeed, the rascal triangle is topically similar to Pascal's triangle in that the configuration starting with begins
![]() |
(2) |
and that the rows afterwards have their first and last entries equal to
![]() |
(3) |
respectively.
The similarities don't end there, however. One well-known fact about Pascal's triangle is that the interior entries of each row are determined by the so-called inverted triangle formula
![]() |
(4) |
as shown in the diagram above.
On the other hand, the rows of the rascal triangle have interior entries which are determined by a so-called diamond formula of the form
![]() |
(5) |
whereby one can compute the first few rows of the rascal triangle to have the form
![]() |
(6) |
(OEIS A077028). Surprisingly, each interior entry of the rascal triangle remains integer-valued despite the fact that, as shown in (), every such entry is computed using integer division (Anggoro et al. 2010).
By examining the first few rows of the rascal triangle, one can hypothesize the validity of a number of significant number-theoretic properties thereof. For example, the values given support the claim (OEIS A077028) that each element of the th diagonal is congruent to 1 modulo
, e.g., in the fourth diagonal, where each of
![]() |
(7) |
is congruent to 1 modulo 3. Here, . Moreover, one notices that the
th number on the
th row
appears to be--and is--precisely the
th number on the
th diagonal (Anggoro et al. 2010) where, here,
and the 0th row is excluded. This observation is fundamental in proving that the rascal triangle consists strictly of integers.
There are a number of other colorful properties of the rascal triangle. For example, the sums of the rows of the rascal triangle are the so-called cake numbers (OEIS A000125):
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
Several other authors have noted interesting connections between numbers in the rascal triangle and various other fields of mathematics including group theory, linear algebra, and geometric analysis.
REFERENCES:
Anggoro, A.; Liu, E.; and Tulloch, A. "The Rascal Triangle." College Math. J. 41, 393-395, 2010.
Bogomolny, A. "The Rascal Triangle." Interactive Mathematics Miscellany and Puzzles. https://www.cut-the-knot.org/arithmetic/algebra/RascalTriangle.shtml.
Sloane, N. J. A. Sequences A077028, A007318, A000125, and A128139 in "The On-Line Encyclopedia of Integer Sequences."
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
