Leibniz Harmonic Triangle
المؤلف:
Sloane, N. J. A
المصدر:
Sequences A001787/M3444, A002378/M1581, A003506, A007622/M4096, A046878, and A046879 in "The On-Line Encyclopedia of Integer Sequences."
الجزء والصفحة:
...
7-1-2021
1377
Leibniz Harmonic Triangle
The Leibniz harmonic triangle is the number triangle given by
 |
(1)
|
(OEIS A003506), where each fraction is the sum of numbers below it and the initial and final entries in the
th row are given by
.
The terms are given by the recurrences
and explicitly by
where
is a binomial coefficient.
The denominators in the second diagonals are the pronic numbers 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, ... (OEIS A002378). A sorted list of all possible denominators in the triangle is given by 6, 12, 20, 30, 42, 56, 60, 72, 90, 105, 110, ... (OEIS A007622).
The row sums are given by 1, 1, 5/6, 2/3, 8/15, 13/30, 151/420, ... (OEIS A046878 and A046879). The sums of the denominators in the
th row are given by
, giving the first few as 1, 4, 12, 32, 80, 192, 448, ... (OEIS A001787).
REFERENCES:
Sloane, N. J. A. Sequences A001787/M3444, A002378/M1581, A003506, A007622/M4096, A046878, and A046879 in "The On-Line Encyclopedia of Integer Sequences."
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة