Read More
Date: 14-9-2020
716
Date: 2-4-2020
693
Date: 5-2-2020
1898
|
A partial solution to the Erdős squarefree conjecture which states that the binomial coefficient is never squarefree for all sufficiently large . Sárkőzy (1985) showed that if is the square part of the binomial coefficient , then
where is the Riemann zeta function. An upper bound on of has been obtained.
REFERENCES:
Erdős, P. and Graham, R. L. Old and New Problems and Results in Combinatorial Number Theory. Geneva, Switzerland: L'Enseignement Mathématique Université de Genève, Vol. 28, 1980.
Sander, J. W. "A Story of Binomial Coefficients and Primes." Amer. Math. Monthly 102, 802-807, 1995.
Sárkőzy, A. "On the Divisors of Binomial Coefficients, I." J. Number Th. 20, 70-80, 1985.
Vardi, I. "Applications to Binomial Coefficients." Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, pp. 25-28, 1991.
|
|
"عادة ليلية" قد تكون المفتاح للوقاية من الخرف
|
|
|
|
|
ممتص الصدمات: طريقة عمله وأهميته وأبرز علامات تلفه
|
|
|
|
|
المجمع العلمي للقرآن الكريم يقيم جلسة حوارية لطلبة جامعة الكوفة
|
|
|