المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
تـشكيـل اتـجاهات المـستـهلك والعوامـل المؤثـرة عليـها
2024-11-27
النـماذج النـظريـة لاتـجاهـات المـستـهلـك
2024-11-27
{اصبروا وصابروا ورابطوا }
2024-11-27
الله لا يضيع اجر عامل
2024-11-27
ذكر الله
2024-11-27
الاختبار في ذبل الأموال والأنفس
2024-11-27

مفاهـيـم حـاضنـات الأعـمـال وانـواعـها
2024-07-26
ما سوى الله فان وما سوى الله فعل الله
7-8-2019
دالة الطلب
1-8-2018
مسكين الدارمي
5-12-2021
تأثير الطعام
1-6-2018
نظرية الامام علي عليه السلام في منشأ الكون
16-4-2016

Sárkőzy,s Theorem  
  
724   02:28 صباحاً   date: 28-12-2020
Author : Erdős, P. and Graham, R. L
Book or Source : Old and New Problems and Results in Combinatorial Number Theory. Geneva, Switzerland: L,Enseignement Mathématique Université de Genève
Page and Part : ...


Read More
Date: 14-9-2020 716
Date: 2-4-2020 693
Date: 5-2-2020 1898

Sárkőzy's Theorem

A partial solution to the Erdős squarefree conjecture which states that the binomial coefficient (2n; n) is never squarefree for all sufficiently large n>=n_0. Sárkőzy (1985) showed that if s(n) is the square part of the binomial coefficient (2n; n), then

 lns(n)∼(sqrt(2)-2)zeta(1/2)sqrt(n),

where zeta(z) is the Riemann zeta function. An upper bound on n_0 of 2^(8000) has been obtained.


REFERENCES:

Erdős, P. and Graham, R. L. Old and New Problems and Results in Combinatorial Number Theory. Geneva, Switzerland: L'Enseignement Mathématique Université de Genève, Vol. 28, 1980.

Sander, J. W. "A Story of Binomial Coefficients and Primes." Amer. Math. Monthly 102, 802-807, 1995.

Sárkőzy, A. "On the Divisors of Binomial Coefficients, I." J. Number Th. 20, 70-80, 1985.

Vardi, I. "Applications to Binomial Coefficients." Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, pp. 25-28, 1991.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.