المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
القيمة الغذائية للثوم Garlic
2024-11-20
العيوب الفسيولوجية التي تصيب الثوم
2024-11-20
التربة المناسبة لزراعة الثوم
2024-11-20
البنجر (الشوندر) Garden Beet (من الزراعة الى الحصاد)
2024-11-20
الصحافة العسكرية ووظائفها
2024-11-19
الصحافة العسكرية
2024-11-19

الجنادل
26-5-2016
Beriberi
11-7-2017
اقتران قابل للاشتقاق Differentiable Function
29-10-2015
الهجرة انعطافٌ جديدٌ في تاريخ الإسلام
7-12-2015
الإعلان عن موقع الصحيفة
1-3-2022
حال النبيُّ (صلى الله عليه وآله وسلم) بعد البعثة
28-09-2015

Complete Sequence  
  
845   04:50 مساءً   date: 25-10-2020
Author : Brown, J. L. Jr.
Book or Source : "Unique Representations of Integers as Sums of Distinct Lucas Numbers." Fib. Quart. 7
Page and Part : ...


Read More
Date: 14-2-2020 649
Date: 20-7-2020 1855
Date: 14-8-2020 594

Complete Sequence

A sequence of numbers V={nu_n} is complete if every positive integer n is the sum of some subsequence of V, i.e., there exist a_i=0 or 1 such that

 n=sum_(i=1)^inftya_inu_i

(Honsberger 1985, pp. 123-126). The Fibonacci numbers are complete. In fact, dropping one number still leaves a complete sequence, although dropping two numbers does not (Honsberger 1985, pp. 123 and 126). The sequence of primes with the element {1} prepended,

 {1,2,3,5,7,11,13,17,19,23,...}

is complete, even if any number of primes each >7 are dropped, as long as the dropped terms do not include two consecutive primes (Honsberger 1985, pp. 127-128). This is a consequence of Bertrand's postulate.


REFERENCES:

Brown, J. L. Jr. "Unique Representations of Integers as Sums of Distinct Lucas Numbers." Fib. Quart. 7, 243-252, 1969.

Hoggatt, V. E. Jr.; Cox, N.; and Bicknell, M. "A Primer for Fibonacci Numbers. XII." Fib. Quart. 11, 317-331, 1973.

Honsberger, R. Mathematical Gems III. Washington, DC: Math. Assoc. Amer., 1985.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.