المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
غزوة الحديبية والهدنة بين النبي وقريش
2024-11-01
بعد الحديبية افتروا على النبي « صلى الله عليه وآله » أنه سحر
2024-11-01
المستغفرون بالاسحار
2024-11-01
المرابطة في انتظار الفرج
2024-11-01
النضوج الجنسي للماشية sexual maturity
2024-11-01
المخرجون من ديارهم في سبيل الله
2024-11-01

مستقبل إعلامي
20-5-2020
Kaempferol
21-10-2018
تحضير محلول كلوريدالخارصين ZnCl2
2024-07-28
يشكل نقل امين السيستيين 3- مركبتو بيروفات
10-10-2021
اسبرجس Aspargus sp.
21-12-2020
التضخيم الغازِي gas amplification factor
7-7-2019

Waring,s Problem  
  
754   04:20 مساءً   date: 15-12-2020
Author : Balasubramanian, R.; Deshouillers, J.-M.; and Dress, F.
Book or Source : "Problème de Waring pour les bicarrés 1, 2." C. R. Acad. Sci. Paris Sér. I Math. 303
Page and Part : ...


Read More
Date: 31-8-2020 943
Date: 24-1-2020 765
Date: 1-12-2020 589

Waring's Problem

In his Meditationes algebraicae, Waring (1770, 1782) proposed a generalization of Lagrange's four-square theorem, stating that every rational integer is the sum of a fixed number g(n) of nth powers of positive integers, where n is any given positive integer and g(n) depends only on n. Waring originally speculated that g(2)=4g(3)=9, and g(4)=19. In 1909, Hilbert proved the general conjecture using an identity in 25-fold multiple integrals (Rademacher and Toeplitz 1957, pp. 52-61).

In Lagrange's four-square theorem, Lagrange proved that g(2)=4, where 4 may be reduced to 3 except for numbers of the form 4^n(8k+7) (as proved by Legendre; Hardy 1999, p. 12). In 1909, Wieferich proved that g(3)=9. In 1859, Liouville proved (using Lagrange's four-square theorem and Liouville polynomial identity) that g(4)<=53. Hardy, and Little established g(4)<=21, and this was subsequently reduced to g(4)=19 by Balasubramanian et al. (1986). For the case g(5), in 1896, Maillet began with a proof that g(5)<=192, in 1909 Wieferich proved g(5)<=59, and Chen (1964) proved that g(5)=37.

In 1936, Dickson, Pillai, and Niven also conjectured an explicit formula for g(s) for s>6 (Bell 1945, pp. 318 and 602), based on the relationship

 (3/2)^n-|_(3/2)^n_|<=1-(1/2)^n{|_(3/2)^n+2_|}.

(1)

If the Diophantine (i.e., n is restricted to being an integer) inequality

 frac[(3/2)^n]<=1-(3/4)^n

(2)

is true, where frac(x) is the fractional part of x, then

 g(n)=2^n+|_(3/2)^n_|-2.

(3)

This was given as a lower bound by J. A. Euler, son of Leonhard Euler, and has been verified to be correct for 6<=n<=471600000 (Kubina and Wunderlich 1990, extending Stemmler 1990). Furthermore, Mahler (1957) proved that at most a finite number of n exceed Euler's lower bound. Unfortunately, the proof is nonconstructive.

There is also a related (but more difficult) problem of finding the least integer n such that every positive integer beyond a certain point (i.e., all but a finite number) is the sum of G(n) nth powers. From 1920-1928, Hardy and Littlewood showed that

 G(n)<=(n-2)2^(n-1)+5

(4)

and conjectured that

 G(k)<{2k+1   for k not a power of 2; 4k   for k a power of 2.

(5)

Heilbronn (1936) improved results by Vinogradov to obtain

 G(n)<=6nlnn+[4+3ln(3+2/n)]n+3.

(6)

If k>224791, then

 G(k)<2klnk+2klnlnk+6k

(7)

(Karatsuba 1985), and for large k,

 G(k)<(1+c)klnk

(8)

for any positive c (Wooley 1992).

It has long been known that G(2)=4. Deshouillers et al. (2000) conjectured that 7373170279850 is the largest integer that cannot be expressed as the sum of four nonnegative cubes.

Landau (1909) established that G(3)<=8, and in 1939 Dickson showed that the only integers requiring nine cubes are 23 and 239. Wieferich proved that only 15 integers require eight cubes: 15, 22, 50, 114, 167, 175, 186, 212, 231, 238, 303, 364, 420, 428, and 454 (OEIS A018889), establishing G(3)<=7 (Wells 1986, p. 70). The largest number known requiring seven cubes is 8042.

In 1933, Hardy and Littlewood showed that G(4)<=19, but this was improved in 1936 to 16 or 17, and shown to be exactly 16 by Davenport (1939b). Vaughan (1986) greatly improved on the method of Hardy and Littlewood, obtaining improved results for n>=5. These results were then further improved by Brüdern (1990), who gave G(5)<=18, and Wooley (1992), who gave G(n) for n=6 to 20. Vaughan and Wooley (1993ab) showed G(8)<=42.

Let G^+(n) denote the smallest number such that almost all sufficiently large integers are the sum of G^+(n) nth powers. Then G^+(3)=4 (Davenport 1939a), G^+(4)=15 (Hardy and Littlewood 1925), G^+(8)=32 (Vaughan 1986), and G^+(16)=64 (Wooley 1992). If the negatives of powers are permitted in addition to the powers themselves, the largest number of nth powers needed to represent an arbitrary integer are denoted eg(n) and EG(n) (Wright 1934, Hunter 1941, Gardner 1986). In general, these values are much harder to calculate than are g(n) and G(n).

The following table gives g(n)G(n)G^+(n)eg(n), and EG(n) for n<=20. The sequence of g(n) is OEIS A002804.

n g(n) G(n) G^+(n) eg(n) EG(n)
2 4 4   3 3
3 9 <=7 <=4 [4, 5]  
4 19 16 <=15 [9, 10]  
5 37 <=17      
6 73 <=24      
7 143 <=33      
8 279 <=42 <=32    
9 548 <=51      
10 1079 <=59      
11 2132 <=67      
12 4223 <=76      
13 8384 <=84      
14 16673 <=92      
15 33203 <=100      
16 66190 <=109 <=64    
17 132055 <=117      
18 263619 <=125      
19 526502 <=134      
20 1051899 <=142      

REFERENCES:

Archibald, R. G. "Waring's Problem: Squares." Scripta Math. 7, 33-48, 1940.

Balasubramanian, R.; Deshouillers, J.-M.; and Dress, F. "Problème de Waring pour les bicarrés 1, 2." C. R. Acad. Sci. Paris Sér. I Math. 303, 85-88 and 161-163, 1986.

Bell, E. T. The Development of Mathematics, 2nd ed. New York: McGraw-Hill, 1945.

Brüdern, J. "On Waring's Problem for Fifth Powers and Some Related Topics." Proc. London Math. Soc. 61, 457-479, 1990.

Chen, J.-R. "Waring's Problem for g(5)=37Sci. Sinica 13, 1547-1568, 1964. Also appeared as Chinese Math Acta 6, 105-127, 1965.

Davenport, H. "On Waring's Problem for Cubes." Acta Math. 71, 123-143, 1939a.

Davenport, H. "On Waring's Problem for Fourth Powers." Ann. Math. 40, 731-747, 1939b.

Deshouillers, J.-M.; Hennecart, F.; and Landreau, B. "7 373 170 279 850." Math. Comput. 69, 421-439, 2000.

Dickson, L. E. "Waring's Problem and Related Results." Ch. 25 in History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Dover, pp. 717-729, 2005.

Gardner, M. "Waring's Problems." Ch. 18 in Knotted Doughnuts and Other Mathematical Entertainments. New York: W. H. Freeman, pp. 222-231, 1986.

Guy, R. K. "Sums of Squares." §C20 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 136-138, 1994.

Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.

Hardy, G. H. and Littlewood, J. E. "Some Problems of Partitio Numerorum (VI): Further Researches in Waring's Problem." Math. Z. 23, 1-37, 1925.

Hardy, G. H. and Wright, E. M. "The Representation of a Number by Two or Four Squares" and "Representation by Cubes and Higher Powers." Chs. 20-21 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 297-339, 1979.

Heilbronn, H. "Über das waringsche Problem." Acta Arith. 1, 212-221, 1936.

Hunter, W. "The Representation of Numbers by Sums of Fourth Powers." J. London Math. Soc. 16, 177-179, 1941.

Karatsuba, A. A. "The Function G(n) in Waring's Problem." Izv. Akad. Nauk SSSR Ser. Mat. 49, 935-947 and 1119, 1985.

Khinchin, A. Y. "An Elementary Solution of Waring's Problem." Ch. 3 in Three Pearls of Number Theory. New York: Dover, pp. 37-64, 1998.

Kubina, J. M. and Wunderlich, M. C. "Extending Waring's Conjecture to 471600000." Math. Comput. 55, 815-820, 1990.

Landau, E. "Über eine Anwendung der Primzahlen auf das Waringsche Problem in der elementaren Zahlentheorie." Math. Ann. 66, 102-105, 1909.

Mahler, K. "On the Fractional Parts of the Powers of a Rational Number (II)." Mathematica 4, 122-124, 1957.

Rademacher, H. and Toeplitz, O. The Enjoyment of Mathematics: Selections from Mathematics for the Amateur. Princeton, NJ: Princeton University Press, 1957.

Sloane, N. J. A. Sequences A018889 and A002804/M3361 in "The On-Line Encyclopedia of Integer Sequences."

Small, C. "Waring's Problem." Math. Mag. 50, 12-16, 1977.

Stemmler, R. M. "The Ideal Waring Theorem for Exponents 401-200000." Math. Comput. 55, 815-820, 1990.

Stewart, I. "The Waring Experience." Nature 323, 674, 1986.

Vaughan, R. C. "On Waring's Problem for Smaller Exponents." Proc. London Math. Soc. 52, 445-463, 1986.

Vaughan, R. C. and Wooley, T. D. "On Waring's Problem: Some Refinements." Proc. London Math. Soc. 63, 35-68, 1991.

Vaughan, R. C. and Wooley, T. D. "Further Improvements in Waring's Problem." Phil. Trans. Roy. Soc. London A 345, 363-376, 1993a.

Vaughan, R. C. and Wooley, T. D. "Further Improvements in Waring's Problem III. Eighth Powers." Phil. Trans. Roy. Soc. London A 345, 385-396, 1993b.

Vaughan, R. C. and Wooley, T. D. "Further Improvements in Waring's Problem. IV. Higher Powers." Acta Arith. 94, 203-285, 2000.

Vaughan, R. C. and Wooley, T. D. "Waring's Problem: A Survey." https://www.math.lsa.umich.edu/~wooley/wps.ps.

Waring, E. Meditationes algebraicae. Cambridge, England: pp. 204-205, 1770. Reprinted as Meditationes algebraicae, 3rd ed. Cambridge, England: pp. 349-350, 1782. Reprinted as Meditationes Algebraicae: An English Translation of the Work of Edward Waring. Providence, RI: Amer. Math. Soc., 1991.

Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, pp. 70 and 75, 1986.

Wooley, T. D. "Large Improvements in Waring's Problem." Ann. Math. 135, 131-164, 1992.

Wright, E. M. "An Easier Waring's Problem." J. London Math. Soc. 9, 267-272, 1934.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.