المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
غزوة الحديبية والهدنة بين النبي وقريش
2024-11-01
بعد الحديبية افتروا على النبي « صلى الله عليه وآله » أنه سحر
2024-11-01
المستغفرون بالاسحار
2024-11-01
المرابطة في انتظار الفرج
2024-11-01
النضوج الجنسي للماشية sexual maturity
2024-11-01
المخرجون من ديارهم في سبيل الله
2024-11-01

مـفهوم المسؤوليـة الاجتـماعيـة
28-3-2022
Lyapunov Condition
24-4-2021
نيويورت – شارل دي برودوم دايي فيكونت دي
18-9-2016
السبانخ او السبانج
26-4-2021
الأجسام الفلكيّة
1-07-2015
قيمة عظمى Maximum Value
25-11-2015

Cubic Number  
  
891   02:11 صباحاً   date: 12-12-2020
Author : Ball, W. W. R. and Coxeter, H. S. M
Book or Source : Mathematical Recreations and Essays, 13th ed. New York: Dover
Page and Part : ...


Read More
Date: 24-2-2020 1072
Date: 1-8-2020 1561
Date: 21-10-2019 2285

Cubic Number

 CubicNumber

A cubic number is a figurate number of the form n^3 with n a positive integer. The first few are 1, 8, 27, 64, 125, 216, 343, ... (OEIS A000578). The protagonist Christopher in the novel The Curious Incident of the Dog in the Night-Time recites the cubic numbers to calm himself and prevent himself from wanting to hit someone (Haddon 2003, p. 213).

The generating function giving the cubic numbers is

 (x(x^2+4x+1))/((x-1)^4)=x+8x^2+27x^3+....

(1)

The hex pyramidal numbers are equivalent to the cubic numbers (Conway and Guy 1996).

Binary plot of the cubic numbers

The plots above show the first 255 (top figure) and 511 (bottom figure) cubic numbers represented in binary.

Pollock (1843-1850) conjectured that every number is the sum of at most 9 cubic numbers (Dickson 2005, p. 23). As a part of the study of Waring's problem, it is known that every positive integer is a sum of no more than 9 positive cubes (g(3)=9, proved by Dickson, Pillai, and Niven in the early twentieth century), that every "sufficiently large" integer is a sum of no more than 7 positive cubes (G(3)<=7). However, it is not known if 7 can be reduced (Wells 1986, p. 70). The number of positive cubes needed to represent the numbers 1, 2, 3, ... are 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 2, ...(OEIS A002376), and the number of distinct ways to represent the numbers 1, 2, 3, ... in terms of positive cubes are 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, ... (OEIS A003108).

In 1939, Dickson proved that the only integers requiring nine positive cubes are 23 and 239. Wieferich proved that only 15 integers require eight cubes: 15, 22, 50, 114, 167, 175, 186, 212, 231, 238, 303, 364, 420, 428, and 454 (OEIS A018889). The quantity G(3) in Waring's problem therefore satisfies G(3)<=7, and the largest number known requiring seven cubes is 8042. Deshouillers et al. (2000) conjectured that 7373170279850 is the largest integer that cannot be expressed as the sum of four nonnegative cubes.

The following table gives the first few numbers which require at least N=1, 2, 3, ..., 9 (i.e., N or more) positive cubes to represent them as a sum.

N OEIS numbers
1 A000578 1, 8, 27, 64, 125, 216, 343, 512, ...
2 A003325 2, 9, 16, 28, 35, 54, 65, 72, 91, ...
3 A047702 3, 10, 17, 24, 29, 36, 43, 55, 62, ...
4 A047703 4, 11, 18, 25, 30, 32, 37, 44, 51, ...
5 A047704 5, 12, 19, 26, 31, 33, 38, 40, 45, ...
6 A046040 6, 13, 20, 34, 39, 41, 46, 48, 53, ...
7 A018890 7, 14, 21, 42, 47, 49, 61, 77, ...
8 A018889 15, 22, 50, 114, 167, 175, 186, ...
9 A018888 23, 239

There is a finite set of numbers which cannot be expressed as the sum of distinct positive cubes: 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, ...(OEIS A001476).

It is known that every integer is a sum of at most 5 signed cubes (eg(3)<=5 in Waring's problem). It is believed that 5 can be reduced to 4, so that

 N=A^3+B^3+C^3+D^3

(2)

for any number N, although this has not been proved for numbers of the form 9n+/-4. However, every multiple of 6 can be represented as a sum of four signed cubes as a result of the algebraic identity

 6x=(x+1)^3+(x-1)^3-x^3-x^3.

(3)

In fact, all numbers N<1000 and not of the form 9n+/-4 are known to be expressible as the sum

 N=A^3+B^3+C^3

(4)

of three (positive or negative) cubes with the exception of N=42, 114, 165, 390, 579, 627, 633, 732, 795, 906, 921, and 975 (Miller and Woollett 1955; Gardiner et al. 1964; Guy 1994, p. 151; Mishima; Elsenhaus and Jahnel 2007; Booker; Huisman 2016). Examples include:

30 = (-283059965)^3+(-2218888517)^3+2220422932^3

(5)

33 = 8866128975287528^3+(-8778405442862239)^3+(-2736111468807040)^3

(6)

52 = 60702901317^3+23961292454^3+(-61922712865)^3

(7)

74 = (-284650292555885)^3+66229832190556^3+283450105697727^3

(8)

75 = 435203083^3+(-435203231)^3+4381159^3

(9)

84 = 41639611^3+(-41531726)^3+(-8241191)^3

(10)

110 = 109938919^3+16540290030^3+(-16540291649)^3

(11)

195 = (-2238006277)^3+(-5087472163)^3+5227922915^3

(12)

290 = 426417007^3+2070897315^3+(-2076906362)^3

(13)

435 = 4460467^3+(-4078175)^3+(-2755337)^3

(14)

444 = 3460795^3+14820289^3+(-14882930)^3

(15)

452 = (-2267462975)^3+(-3041790413)^3+3414300774^3

(16)

462 = 1933609^3+(-1832411)^3+(-1024946)^3

(17)

478 = (-1368722)^3+(-13434503)^3+13439237^3.

(18)

While it is known that equation (◇) has no solutions for N of the form 9n+/-4 (Hardy and Wright 1979, p. 327), there are known reasons for excluding the above integers (Gardiner et al. 1964). Mahler proved that 1 has infinitely many representations as three signed cubes.

If one also excludes numbers of the form 108n+/-38, every number can be represented as a sum of four signed cubes, using one of the following algebraic identities, or their complementary identities (via x->-x):

6x = (x+1)^3+(x-1)^3-x^3-x^3

(19)

6x+3 = x^3+(-x+4)^3+(2x-5)^3+(-2x+4)^3

(20)

18x+1 = (2x+14)^3+(-2x-23)^3+(-3x-26)^3+(3x+30)^3

(21)

18x+7 = (x+2)^3+(6x-1)^3+(8x-2)^3+(-9x+2)^3

(22)

18x+8 = (x-5)^3+(-x+14)^3+(-3x+29)^3+(3x-30)^3

(23)

54x+2 = (29484x^2+2211x+43)^3+(-29484x^2-2157x-41)^3+(9828x^2+485x+4)^3+(-9828x^2-971x-22)^3

(24)

54x+20 = (3x-11)^3+(-3x+10)^3+(x+2)^3+(-x+7)^3

(25)

216x-16 = (14742x^2-2157x+82)^3+(-14742x^2+2211x-86)^3+(4914x^2-971x+44)^3+(-4914x^2+485x-8)^3

(26)

216x+92 = (3x-164)^3+(-3x+160)^3+(x-35)^3+(-x+71)^3.

(27)

These identities,and a proof for 108n+/-38 were given by Demjanenko (Demjanenko 1966, Cohen 2004).

The following table gives the numbers which can be represented in exactly W different ways as a sum of N positive cubes. (Combining all Ws for a given N then gives the sequences in the previous table.) For example,

 157=4^3+4^3+3^3+1^3+1^3=5^3+2^3+2^3+2^3+2^3

(28)

can be represented in W=2 ways by N=5 cubes. The smallest number representable in W=2 ways as a sum of N=2 cubes,

 1729=1^3+12^3=9^3+10^3,

(29)

is called the Hardy-Ramanujan number and has special significance in the history of mathematics as a result of a story told by Hardy about Ramanujan. Note that OEIS A001235 is defined as the sequence of numbers which are the sum of cubes in two or more ways, and so appears identical in the first few terms to the (N=2,W=2) series given below.

N W OEIS numbers
1 0 A007412 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, ...
1 1 A000578 1, 8, 27, 64, 125, 216, 343, 512, ...
2 0 A057903 1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, ...
2 1   2, 9, 16, 28, 35, 54, 65, 72, 91, ...
2 2 A018850 1729, 4104, 13832, 20683, 32832, ...
2 3 A003825 87539319, 119824488, 143604279, ...
2 4 A003826 6963472309248, 12625136269928, ...
2 5   48988659276962496, ...
2 6   8230545258248091551205888, ...
3 0 A057904 1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, ...
3 1 A025395 3, 10, 17, 24, 29, 36, 43, 55, 62, ...
3 2   251, ...
4 0 A057905 1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, ...
4 1 A025403 4, 11, 18, 25, 30, 32, 37, 44, 51, ...
4 2 A025404 219, 252, 259, 278, 315, 376, 467, ...
5 0 A057906 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, ...
5 1 A048926 5, 12, 19, 26, 31, 33, 38, 40, 45, ...
5 2 A048927 157, 220, 227, 246, 253, 260, 267, ...
6 0 A057907 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 15, ...
6 1 A048929 6, 13, 20, 27, 32, 34, 39, 41, 46, ...
6 2 A048930 158, 165, 184, 221, 228, 235, 247, ...
6 3 A048931 221, 254, 369, 411, 443, 469, 495, ...

The following table gives the possible residues (mod n) for cubic numbers for n=1 to 20, as well as the number of distinct residues s(n).

n s(n) x^3 (mod n)
2 2 0, 1
3 3 0, 1, 2
4 3 0, 1, 3
5 5 0, 1, 2, 3, 4
6 6 0, 1, 2, 3, 4, 5
7 3 0, 1, 6
8 5 0, 1, 3, 5, 7
9 3 0, 1, 8
10 10 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
11 11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
12 9 0, 1, 3, 4, 5, 7, 8, 9, 11
13 5 0, 1, 5, 8, 12
14 6 0, 1, 6, 7, 8, 13
15 15 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
16 10 0, 1, 3, 5, 7, 8, 9, 11, 13, 15
17 17 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
18 6 0, 1, 8, 9, 10, 17
19 7 0, 1, 7, 8, 11, 12, 18
20 15 0, 1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19

Dudeney found two rational numbers other than 1 and 2 whose cubes sum to nine,

 (415280564497)/(348671682660) and (676702467503)/(348671682660)

(30)

(Gardner 1958). The problem of finding two rational numbers whose cubes sum to six was "proved" impossible by Legendre. However, Dudeney found the simple solutions 17/21 and 37/21.

The only three consecutive integers whose cubes sum to a cube are given by the Diophantine equation

 3^3+4^3+5^3=6^3.

(31)

Catalan's conjecture states that 8 and 9 (2^3 and 3^2) are the only consecutive powers (excluding 0 and 1), i.e., the only solution to Catalan's Diophantine problem. This conjecture has not yet been proved or refuted, although R. Tijdeman has proved that there can be only a finite number of exceptions should the conjecture not hold. It is also known that 8 and 9 are the only consecutive cubic and square numbers (in either order).

There are six positive integers equal to the sum of the digits of their cubes: 1, 8, 17, 18, 26, and 27 (OEIS A046459; Moret Blanc 1879). There are four positive integers equal to the sums of the cubes of their digits:

153 = 1^3+5^3+3^3

(32)

370 = 3^3+7^3+0^3

(33)

371 = 3^3+7^3+1^3

(34)

407 = 4^3+0^3+7^3

(35)

(Ball and Coxeter 1987). There are two square numbers of the form n^3-44=2^3-4 and 121=5^3-4 (Le Lionnais 1983). A cube cannot be the concatenation of two cubes, since if c^3 is the concatenation of a^3 and b^3, then c^3=10^ka^3+b^3, where k is the number of digits in b^3. After shifting any powers of 1000 in 10^k into a^3, the original problem is equivalent to finding a solution to one of the Diophantine equations

c^3-b^3 = a^3

(36)

c^3-b^3 = 10a^3

(37)

c^3-b^3 = 100a^3.

(38)

None of these have solutions in integers, as proved independently by Sylvester, Lucas, and Pepin (Dickson 2005, pp. 572-578).


REFERENCES:

Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 14, 1987.

Bertault, F.; Ramaré, O.; and Zimmermann, P. "On Sums of Seven Cubes." Math. Comput. 68, 1303-1310, 1999.

Booker, A. R. "Cracking the Problem with 33." n.d. https://people.maths.bris.ac.uk/~maarb/papers/cubesv1.pdf.

Cohen, H."On Sums of Four Cubes." (Trans. of Demjanenko's paper.) 2004. https://www.math.u-bordeaux.fr/~cohen/.

Conn, B. and Vaserstein, L. "On Sums of Three Integral Cubes." Contemp. Math. 166, 285-294, 1994.

Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 42-44, 1996.

Davenport, H. "On Waring's Problem for Cubes." Acta Math. 71, 123-143, 1939.

Demjanenko, V. "On Sums of Four Cubes." Izvesti Vischik Outchetsnik Zavedenii Math. 54, 64-69, 1966.

Deshouillers, J.-M.; Hennecart, F.; and Landreau, B. "7 373 170 279 850." Math. Comput. 69, 421-439, 2000.

Dickson, L. E. History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Dover, 2005.

Elkies, N. D. "Rational Points Near Curves and Small Nonzero |x^3-y^2| via Lattice Reduction." In Algorithmic Number Theory. Proceedings of the 4th International Symposium (ANTS-IV) held at the Universiteit Leiden, Leiden, July 2-7, 2000 (Ed. W. Bosma). Berlin: Springer-Verlag, pp. 33-63, 2000. https://arxiv.org/abs/math.NT/0005139.

Elsenhaus, A.-S. and Jahnel, J. "List of Solutions of x^3+y^3+z^3=n for n<1000 Neither a Cube Nor Twice a Cube." Apr. 19, 2007. https://www.uni-math.gwdg.de/jahnel/Arbeiten/Liste/threecubes_20070419.txt.

Elsenhaus, A.-S. and Jahnel, J. "New Sums of Three Cubes." Math. Comput. 78, 1227-1230, 2009.

Gardiner, V. L.; Lazarus, R. B.; and Stein, P. R. "Solutions of the Diophantine Equation x^3+y^3=z^3-d." Math. Comput. 18, 408-413, 1964.

Gardner, M. "Mathematical Games: About Henry Ernest Dudeney, A Brilliant Creator of Puzzles." Sci. Amer. 198, 108-112, Jun. 1958.

Guy, R. K. "Sum of Four Cubes." §D5 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 151-152, 1994.

Haddon, M. The Curious Incident of the Dog in the Night-Time. New York: Vintage, 2003.

Hardy, G. H. and Wright, E. M. "Representation by Cubes and Higher Powers." Ch. 21 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 317-339, 1979.

Heath-Brown, D. R.; Lioen, W. M.; and te Riele, H. J. J. "On Solving the Diophantine Equation x^3+y^3+z^3=k on a Vector Computer." Math. Comput. 61, 235-244, 1993.

Huisman, S. G. "Newer Sums of Three Cubes." 26 Apr 2016. https://arxiv.org/abs/1604.07746.

Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 53, 1983.

Miller, J. C. P. and Woollett, M. F. C. "Solutions of the Diophantine Equation x^3+y^3+z^3=k." J. London Math. Soc. 30, 101-110, 1955.

Mishima, H. "n=x^3+y^3+z^3." https://www.asahi-net.or.jp/~kc2h-msm/mathland/math04/cube00.htm.

Mishima, H. "The Mathematician's Secret Room." https://www.asahi-net.or.jp/~KC2H-MSM/mathland/math04/cube00.htm.

Pollock, F. "On the Extension of the Principle of Fermat's Theorem of the Polygonal Numbers to the Higher Orders of Series Whose Ultimate Differences Are Constant. With a New Theorem Proposed, Applicable to All the Orders." Abs. Papers Commun. Roy. Soc. London 5, 922-924, 1843-1850.

Sloane, N. J. A. Sequences A000578/M4499, A001235, A001476, A002376/M0466, A003108/M0209, A003072, A003325, A003327, A003328, A003825, A003826, A007412/M0493, A011541, A018850, A018888, A018889, A018890, A025395, A046040, A046041, A046459, A048926, A048927, A048928, A048929, A048930, A048931, A048932, A057903, A057904, A057905, A057906, and A057907 in "The On-Line Encyclopedia of Integer Sequences."

Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 70, 1986.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.