

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Smarandache Function
المؤلف:
Akbik, S.
المصدر:
"On a Density Problem of Erdős." Int. J. Math. Sci. 22
الجزء والصفحة:
...
29-11-2020
1013
Smarandache Function
The Smarandache function
is the function first considered by Lucas (1883), Neuberg (1887), and Kempner (1918) and subsequently rediscovered by Smarandache (1980) that gives the smallest value for a given
at which
(i.e.,
divides
factorial). For example, the number 8 does not divide
,
,
, but does divide
, so
.

For
, 2, ...,
is given by 1, 2, 3, 4, 5, 3, 7, 4, 6, 5, 11, ... (OEIS A002034), where it should be noted that Sloane defines
, while Ashbacher (1995) and Russo (2000, p. 4) take
. The incrementally largest values of
are 1, 2, 3, 4, 5, 7, 11, 13, 17, 19, 23, 29, ... (OEIS A046022), which occur at the values where
. The incrementally smallest values of
relative to
are
= 1, 1/2, 1/3, 1/4, 1/6, 1/8, 1/12, 3/40, 1/15, 1/16, 1/24, 1/30, ... (OEIS A094404 and A094372), which occur at
, 6, 12, 20, 24, 40, 60, 80, 90, 112, 120, 180, ... (OEIS A094371).
Formulas exist for immediately computing
for special forms of
. The simplest cases are
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
where
is a prime,
are distinct primes,
, and
(Kempner 1918). In addition,
![]() |
(6) |
if
is the
th even perfect number and
is the corresponding Mersenne prime (Ashbacher 1997; Ruiz 1999a). Finally, if
is a prime number and
an integer, then
![]() |
(7) |
(Ruiz 1999b).
The case
for
is more complicated, but can be computed by an algorithm due to Kempner (1918). To begin, define
recursively by
![]() |
(8) |
with
. This can be solved in closed form as
![]() |
(9) |
Now find the value of
such that
, which is given by
![]() |
(10) |
where
is the floor function. Now compute the sequences
and
according to the Euclidean algorithm-like procedure
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
i.e., until the remainder
. At each step,
is the integer part of
and
is the remainder. For example, in the first step,
and
. Then
![]() |
(16) |
(Kempner 1918).
The value of
for general
is then given by
![]() |
(17) |
(Kempner 1918).
For all 
![]() |
(18) |
where
is the greatest prime factor of
.
can be computed by finding
and testing if
divides
. If it does, then
. If it doesn't, then
and Kempner's algorithm must be used. The set of
for which
(i.e.,
does not divide
) has density zero as proposed by Erdős (1991) and proved by Kastanas (1994), but for small
, there are quite a large number of values for which
. The first few of these are 4, 8, 9, 12, 16, 18, 24, 25, 27, 32, 36, 45, 48, 49, 50, ... (OEIS A057109). Letting
denote the number of positive integers
such that
, Akbik (1999) subsequently showed that
![]() |
(19) |
This was subsequently improved by Ford (1999) and De Koninck and Doyon (2003), the former of which is unfortunately incorrect. Ford (1999) proposed the asymptotic formula
![]() |
(20) |
where
is the Dickman function,
is defined implicitly through
![]() |
(21) |
and the constant needs correction (Ivić 2003). Ivić (2003) subsequently showed that
![]() |
(22) |
and, in terms of elementary functions,
![]() |
(23) |
Tutescu (1996) conjectured that
never takes the same value for two consecutive arguments, i.e.,
for any
. This holds up to at least
(Weisstein, Mar. 3, 2004).
Multiple values of
can have the same value of
, as summarized in the following table for small
.
![]() |
such that ![]() |
| 1 | 1 |
| 2 | 2 |
| 3 | 3, 6 |
| 4 | 4, 8, 12, 24 |
| 5 | 5, 10, 15, 20, 30, 40, 60, 120 |
| 6 | 9, 16, 18, 36, 45, 48, 72, 80, 90, 144, 180, 240, 360, 720 |
Let
denote the smallest inverse of
, i.e., the smallest
for which
. Then
is given by
![]() |
(24) |
where
![]() |
(25) |
(J. Sondow, pers. comm., Jan. 17, 2005), where
is the greatest prime factor of
and
is the floor function. For
, 2, ...,
is given by 1, 2, 3, 4, 5, 9, 7, 32, 27, 25, 11, 243, ... (OEIS A046021). Some values of
first occur only for very large
. The sequence of incrementally largest values of
is 1, 2, 3, 4, 5, 9, 32, 243, 4096, 59049, 177147, 134217728, ... (OEIS A092233), corresponding to
, 2, 3, 4, 5, 6, 8, 12, 16, 24, 27, 32, ... (OEIS A092232).
To find the number of
for which
, note that by definition,
is a divisor of
but not of
. Therefore, to find all
for which
has a given value, say all
with
, take the set of all divisors of
and omit the divisors of
. In particular, the number
of
for which
for
is exactly
![]() |
(26) |
where
denotes the number of divisors of
, i.e., the divisor function
. Therefore, the numbers of integers
with
, 2, ... are given by 1, 1, 2, 4, 8, 14, 30, 36, 64, 110, ... (OEIS A038024).
In particular, equation (26) shows that the inverse Smarandache function
always exists since for every
there is an
with
(hence a smallest one a(n)), since
for
.
Sondow (2006) showed that
unexpectedly arises in an irrationality bound for e, and conjectures that the inequality
holds for almost all
, where "for almost all" means except for a set of density zero. The exceptions are 2, 3, 6, 8, 12, 15, 20, 24, 30, 36, 40, 45, 48, 60, 72, 80, ... (OEIS A122378).
Since
for almost all
(Erdős 1991, Kastanas 1994), where
is the greatest prime factor, an equivalent conjecture is that the inequality
holds for almost all
. The exceptions are 2, 3, 4, 6, 8, 9, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, ... (OEIS A122380).
D. Wilson points out that if
![]() |
(27) |
is the power of the prime
in
, where
is the sum of the base-
digits of
, then it follows that
![]() |
(28) |
where the minimum is taken over the primes
dividing
. This minimum appears to always be achieved when
is the greatest prime factor of
.
REFERENCES:
Akbik, S. "On a Density Problem of Erdős." Int. J. Math. Sci. 22, 655-658, 1999.
Ashbacher, C. An Introduction to the Smarandache Function. Cedar Rapids, IA: Decisionmark, 1995.
Ashbacher, C. "Problem 4616." School Sci. Math. 97, 221, 1997.
Begay, A. "Smarandache Ceil Functions." Bulletin Pure Appl. Sci. India 16E, 227-229, 1997.
De Koninck, J.-M. and Doyon, N. "On a Thin Set of Integers Involving the Largest Prime Factor Function." Int. J. Math. Math. Sci., No. 19, 1185-1192, 2003.
Dumitrescu, C. and Seleacu, V. The Smarandache Function. Vail, AZ: Erhus University Press, 1996.
Erdős, P. "Problem 6674." Amer. Math. Monthly 98, 965, 1991.
Finch, S. "The Average Value of the Smarandache Function." Smarandache Notions J. 10, 95-96, 1999. https://www.gallup.unm.edu/~smarandache/SNBook10.pdf.
Finch, S. "Moments of the Smarandache Function." Smarandache Notions J. 11, 140-141, 2000. https://www.gallup.unm.edu/~smarandache/SNBook11.pdf.
Finch, S. R. "Golomb-Dickman Constant." §5.4 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 284-292, 2003.
Ford, K. "The Normal Behavior of the Smarandache Function." Smarandache Notions J. 10, 81-86, 1999. https://www.gallup.unm.edu/~smarandache/SNBook10.pdf.
"Functions in Number Theory." https://www.gallup.unm.edu/~smarandache/FUNCT1.TXT.
Hungerbühler, N. and Specker, E. "A Generalization of the Smarandache Function to Several Variables." Integers: Electronic J. Combin. Number Th. 6, #A23, 2006 https://www.integers-ejcnt.org/vol6.html.
Ibstedt, H. Surfing on the Ocean of Numbers--A Few Smarandache Notions and Similar Topics. Lupton, AZ: Erhus University Press, pp. 27-30, 1997.
Ivić, A. "On a Problem of Erdős Involving the Largest Prime Factor of
." 5 Nov 2003. https://arxiv.org/abs/math.NT/0311056.
Kastanas, I. "Solution to Problem 6674: The Smallest Factorial That Is a Multiple of
." Amer. Math. Monthly 101, 179, 1994.
Kempner, A. J. "Miscellanea." Amer. Math. Monthly 25, 201-210, 1918.
Lucas, E. "Question Nr. 288." Mathesis 3, 232, 1883.
Neuberg, J. "Solutions de questions proposées, Question Nr. 288." Mathesis 7, 68-69, 1887.
Ruiz, S. M. "Smarandache Function Applied to Perfect Numbers." Smarandache Notions J. 10, 114-155, 1999a.
Ruiz, S. M. "A Result Obtained Using Smarandache Function." Smarandache Notions J. 10, 123-124, 1999b.
Russo, F. A Set of New Smarandache Functions, Sequences, and Conjectures in Numer Theory. Lupton, AZ: American Research Press, 2000.
Sandor, J. "On Certain Inequalities Involving the Smarandache Function." Abstracts of Papers Presented to the Amer. Math. Soc. 17, 583, 1996.
Sloane, N. J. A. Sequences A002034/M0453, A038024, A046021, A046022, A057109, A092232, A092233, A094371, A094372, A094404, A122378, and A122380 in "The On-Line Encyclopedia of Integer Sequences."
Smarandache, F. "A Function in Number Theory." Analele Univ. Timisoara, Ser. St. Math. 43, 79-88, 1980.
Smarandache, F. Collected Papers, Vol. 1. Bucharest, Romania: Tempus, 1996.
Smarandache, F. Collected Papers, Vol. 2. Kishinev, Moldova: Kishinev University Press, 1997.
Sondow, J. "A Geometric Proof that
Is Irrational and a New Measure of Its Irrationality." Amer. Math. Monthly 113, 637-641, 2006.
Tutescu, L. "On a Conjecture Concerning the Smarandache Function." Abstracts of Papers Presented to the Amer. Math. Soc. 17, 583, 1996.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية




















![nu=|_log_p[1+alpha(p-1)]_|,](https://mathworld.wolfram.com/images/equations/SmarandacheFunction/NumberedEquation5.gif)
















![mu(p_1^(alpha_1)p_2^(alpha_2)...p_r^(alpha_r))=max[mu(p_1^(alpha_1)),mu(p_2^(alpha_2)),...,mu(p_r^(alpha_r))]](https://mathworld.wolfram.com/images/equations/SmarandacheFunction/NumberedEquation7.gif)





![N(x)=xexp[-sqrt(2lnxlnlnx)(1+O(lnlnlnx/lnlnx))].](https://mathworld.wolfram.com/images/equations/SmarandacheFunction/NumberedEquation13.gif)

such that 
![a(k)=[gpf(k)]^(e+1),](https://mathworld.wolfram.com/images/equations/SmarandacheFunction/NumberedEquation14.gif)
![e=sum_(i=1)^(|_log_(gpf(k))(n-1)_|)|_(n-1)/([gpf(k)]^i)_|](https://mathworld.wolfram.com/images/equations/SmarandacheFunction/NumberedEquation15.gif)



قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)