Read More
Date: 9-8-2020
698
Date: 24-7-2020
478
Date: 14-5-2020
961
|
The numbers and are an amicable pair if the three integers
(1) |
|||
(2) |
|||
(3) |
are all prime numbers for some positive integer satisfying (Dickson 2005, p. 42). However, there are many amicable pairs which do not satisfy Euler's rule, so it is a sufficient but not necessary condition for amicability. Euler's rule is a generalization of Thâbit ibn Kurrah rule.
The first few for which Euler's rule is satisfied are , , , , , ... (OEIS A094445 and A094446), with no others for , corresponding to the triples , (23, 47, 1151), (191, 383, 73727), ..., giving the amicable pairs (220, 284), (17296, 18416), (9363584, 9437056), ....
REFERENCES:
Borho, W. "On Thabit ibn Kurrah's Formula for Amicable Numbers." Math. Comput. 26, 571-578, 1972.
Dickson, L. E. History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Dover, 2005.
Euler, L. "De Numeris Amicabilibus." In Opera Omnia, Series Prima, Vol. 2. Leipzig, Germany: Teubner, pp. 63-162, 1915.
Sloane, N. J. A. Sequences A094445 and A094446 in "The On-Line Encyclopedia of Integer Sequences."
te Riele, H. J. J. "Four Large Amicable Pairs." Math. Comput. 28, 309-312, 1974.a
|
|
5 علامات تحذيرية قد تدل على "مشكل خطير" في الكبد
|
|
|
|
|
تستخدم لأول مرة... مستشفى الإمام زين العابدين (ع) التابع للعتبة الحسينية يعتمد تقنيات حديثة في تثبيت الكسور المعقدة
|
|
|