المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24
من آداب التلاوة
2024-11-24
مواعيد زراعة الفجل
2024-11-24
أقسام الغنيمة
2024-11-24
سبب نزول قوله تعالى قل للذين كفروا ستغلبون وتحشرون الى جهنم
2024-11-24

كتب في عليين وأخرى‏ في سجين
16-12-2015
حكم من استأجر ليحجّ عنه بنفسه.
28-4-2016
ELECTROMAGNETIC WAVES
24-10-2020
Roman Factorial
19-5-2019
Diphthongs GOAT
2024-07-01
لا النافية للجنس
17-10-2014

Narcissistic Number  
  
1149   04:39 مساءً   date: 16-11-2020
Author : Corning, T.
Book or Source : "Exponential Digital Invariants." https://members.aol.com/tec153/Edi4web/Edi.html
Page and Part : ...


Read More
Date: 27-11-2019 555
Date: 11-8-2020 558
Date: 4-11-2020 704

Narcissistic Number

An n-digit number that is the sum of the nth powers of its digits is called an n-narcissistic number. It is also sometimes known as an Armstrong number, perfect digital invariant (Madachy 1979), or plus perfect number. Hardy (1993) wrote, "There are just four numbers, after unity, which are the sums of the cubes of their digits: 153=1^3+5^3+3^3370=3^3+7^3+0^3371=3^3+7^3+1^3, and 407=4^3+0^3+7^3. These are odd facts, very suitable for puzzle columns and likely to amuse amateurs, but there is nothing in them which appeals to the mathematician." Narcissistic numbers therefore generalize these "unappealing" numbers to other powers (Madachy 1979, p. 164).

The smallest example of a narcissistic number other than the trivial 1-digit numbers is

 153=1^3+5^3+3^3.

(1)

The first few are given by 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 8208, 9474, 54748, ... (OEIS A005188).

It can easily be shown that base-10 n-narcissistic numbers can exist only for n<=60, since

 n·9^n<10^(n-1)

(2)

for n>60. In fact, as summarized in the table below, a total of 88 narcissistic numbers exist in base 10, as proved by D. Winter in 1985 and verified by D. Hoey. T. A. Mendes Oliveira e Silva gave the full sequence in a posting (Article 42889) to sci.math on May 9, 1994. These numbers exist for only 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 16, 17, 19, 20, 21, 23, 24, 25, 27, 29, 31, 32, 33, 34, 35, 37, 38, and 39 (OEIS A114904) digits, and the series of smallest narcissistic numbers of n digits are 0, (none), 153, 1634, 54748, 548834, ... (OEIS A014576).

n base-10 n-narcissistic numbers
1 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
3 153, 370, 371, 407
4 1634, 8208, 9474
5 54748, 92727, 93084
6 548834
7 1741725, 4210818, 9800817, 9926315
8 24678050, 24678051, 88593477
9 146511208, 472335975, 534494836, 912985153
10 4679307774
11 32164049650, 32164049651, 40028394225, 42678290603, 44708635679, 49388550606, 82693916578, 94204591914
14 28116440335967
16 4338281769391370, 4338281769391371
17 21897142587612075, 35641594208964132, 35875699062250035
19 1517841543307505039, 3289582984443187032, 4498128791164624869, 4929273885928088826
20 63105425988599693916
21 128468643043731391252, 449177399146038697307
23 21887696841122916288858, 27879694893054074471405, 27907865009977052567814, 28361281321319229463398, 35452590104031691935943
24 174088005938065293023722, 188451485447897896036875, 239313664430041569350093
25 1550475334214501539088894, 1553242162893771850669378, 3706907995955475988644380, 3706907995955475988644381, 4422095118095899619457938
27 121204998563613372405438066, 121270696006801314328439376, 128851796696487777842012787, 174650464499531377631639254, 177265453171792792366489765
29 14607640612971980372614873089, 19008174136254279995012734740, 19008174136254279995012734741, 23866716435523975980390369295
31 1145037275765491025924292050346, 1927890457142960697580636236639, 2309092682616190307509695338915
32 17333509997782249308725103962772
33 186709961001538790100634132976990, 186709961001538790100634132976991
34 1122763285329372541592822900204593
35 12639369517103790328947807201478392, 12679937780272278566303885594196922
37 1219167219625434121569735803609966019
38 12815792078366059955099770545296129367
39 115132219018763992565095597973971522400, 115132219018763992565095597973971522401

The table below gives the first few base-b narcissistic numbers for small bases b. A table of the largest known narcissistic numbers in various bases is given by Pickover (1995) and a tabulation of narcissistic numbers in various bases is given by Corning.

b OEIS base-b narcissistic numbers
2   1
3   1, 2, 5, 8, 17
4 A010344 1, 2, 3, 28, 29, 35, 43, 55, 62, 83, 243
5 A010346 1, 2, 3, 4, 13, 18, 28, 118, 289, 353, 419, 4890, 4891, 9113
6 A010348 1, 2, 3, 4, 5, 99, 190, 2292, 2293, 2324, 3432, 3433, 6197, ...
7 A010350 1, 2, 3, 4, 5, 6, 10, 25, 32, 45, 133, 134, 152, 250, 3190, ...
8 A010354 1, 2, 3, 4, 5, 6, 7, 20, 52, 92, 133, 307, 432, 433, ...
9 A010353 1, 2, 3, 4, 5, 6, 7, 8, 41, 50, 126, 127, 468, ...

A closely related set of numbers generalize the narcissistic number to n-digit numbers which are the sums of any single power of their digits. For example, 4150 is a 4-digit number which is the sum of fifth powers of its digits. Since the number of digits is not equal to the power to which they are taken for such numbers, they are not narcissistic numbers. The smallest numbers which are sums of any single positive power of their digits are 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 4150, 4151, 8208, 9474, ... (OEIS A023052), with powers 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 4, 5, 5, 4, 4, ... (OEIS A046074).

Another set of related numbers are the Münchhausen numbers, which are numbers equal to the sum of their digits raised to each digit's power.

The smallest numbers which are equal to the nth powers of their digits for n=3, 4, ..., are 153, 1634, 4150, 548834, 1741725, ... (OEIS A003321). The n-digit numbers equal to the sum of nth powers of their digits (a finite sequence) are called Armstrong numbers or plus perfect number and are given by 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 8208, 9474, 54748, ... (OEIS A005188).

If the sum-of-kth-powers-of-digits operation applied iteratively to a number n eventually returns to n, the smallest number in the sequence is called a k-recurring digital invariant.

The numbers that are equal to the sum of consecutive powers of their digits are given by 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 89, 135, 175, 518, 598, 1306, 1676, 2427, 2646798 (OEIS A032799), e.g.,

 2646798=2^1+6^2+4^3+6^4+7^5+9^6+8^7.

(3)

The values obtained by summing the dth powers of the digits of a d-digit number n for n=1, 2, ... are 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 5, 10, 17, 26, ... (OEIS A101337).


REFERENCES:

Corning, T. "Exponential Digital Invariants." https://members.aol.com/tec153/Edi4web/Edi.html

Deimel, L. E. Jr. and Jones, M. T. "Finding Pluperfect Digital Invariants: Techniques, Results and Observations." J. Recr. Math. 14, 97-108, 1981.

Hardy, G. H. A Mathematician's Apology. New York: Cambridge University Press, p. 105, 1993.

Heinz, H. "Narcissistic Numbers." https://www.magic-squares.net/narciss.htm.

Keith, M. "Wild Narcissistic Numbers." https://users.aol.com/s6sj7gt/mikewild.htm.

Lamoitier, J. P. "Fifty Basic Exercises." SYBEX Inc., 1981.

Madachy, J. S. "Narcissistic Numbers." Madachy's Mathematical Recreations. New York: Dover, pp. 163-173, 1979.

Pickover, C. A. Keys to Infinity. New York: Wiley, pp. 169-170, 1995.

Pickover, C. A. "The Latest Gossip on Narcissistic Numbers." Ch. 88 in Wonders of Numbers: Adventures in Mathematics, Mind, and Meaning. Oxford, England: Oxford University Press, pp. 204-205, 2001.

Rivera, C. "Problems & Puzzles: Puzzle 015-Narcissistic and Handsome Primes." https://www.primepuzzles.net/puzzles/puzz_015.htm.

Roberts, J. The Lure of the Integers. Washington, DC: Math. Assoc. Amer., p. 35, 1992.

Rumney, M. "Digital Invariants." Recr. Math. Mag. No. 12, 6-8, Dec. 1962.

Sloane, N. J. A. Sequences A005188/M0488, A003321/M5403, A010344, A010346, A010348, A010350, A010353, A010354, A014576, A023052, A032799, A046074, A101337, and A114904 in "The On-Line Encyclopedia of Integer Sequences."




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.