المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
العوامل الجوية المناسبة لزراعة البطاطس
2024-11-28
السيادة القمية Apical Dominance في البطاطس
2024-11-28
مناخ المرتفعات Height Climate
2024-11-28
التربة المناسبة لزراعة البطاطس Solanum tuberosum
2024-11-28
مدى الرؤية Visibility
2024-11-28
Stratification
2024-11-28

فلسفة صلاة الجمعة العباديّة والسياسيّة
12-10-2014
الآيات الدالّة على نبوّة الخاتم
3-08-2015
ما قتلوه وما صلبوه
2024-10-31
اقتران دوري Periodic Function
29-10-2015
Literary applications of syllable constituents
21-3-2022
تكاثر النخيل باستخدام الركوب ( الطواعين )
12-1-2016

Katadrome  
  
863   03:28 مساءً   date: 14-11-2020
Author : Sloane, N. J. A.
Book or Source : Sequence A023797 in "The On-Line Encyclopedia of Integer Sequences."
Page and Part : ...


Read More
Date: 18-11-2019 805
Date: 27-10-2019 730
Date: 8-5-2020 664

Katadrome

A katadrome is a number whose hexadecimal digits are in strict descending order. The first few are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 32, 33, 48, 49, ... (OEIS A023797), corresponding to 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, 20, 21, 30, 31, ....

A number that is not a katadrome is a plaindrome.

The following table summarized related classes of numbers.

name base-16 digit order
katadrome strict descending
metadrome strict ascending
nialpdrome nonincreasing
plaindrome nondecreasing

REFERENCES:

Sloane, N. J. A. Sequence A023797 in "The On-Line Encyclopedia of Integer Sequences."




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.