Read More
Date: 21-3-2020
538
Date: 8-10-2020
662
Date: 16-10-2019
535
|
Let and and for , let be the least integer which can be expressed as the sum of two or more consecutive terms. The resulting sequence is 1, 2, 3, 5, 6, 8, 10, 11, 14, 16, ... (OEIS A005243). Let and , form all possible expressions of the form for , and append them. The resulting sequence is 2, 3, 5, 9, 14, 17, 26, 27, ... (OEIS A005244).
REFERENCES:
Guy, R. K. "Three Sequences of Hofstadter." §E31 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 231-232, 1994.
Sloane, N. J. A. Sequences A005243/M0623 and A005244/M0705 in "The On-Line Encyclopedia of Integer Sequences."
|
|
مخاطر خفية لمكون شائع في مشروبات الطاقة والمكملات الغذائية
|
|
|
|
|
"آبل" تشغّل نظامها الجديد للذكاء الاصطناعي على أجهزتها
|
|
|
|
|
تستخدم لأول مرة... مستشفى الإمام زين العابدين (ع) التابع للعتبة الحسينية يعتمد تقنيات حديثة في تثبيت الكسور المعقدة
|
|
|