المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
غزوة الحديبية والهدنة بين النبي وقريش
2024-11-01
بعد الحديبية افتروا على النبي « صلى الله عليه وآله » أنه سحر
2024-11-01
المستغفرون بالاسحار
2024-11-01
المرابطة في انتظار الفرج
2024-11-01
النضوج الجنسي للماشية sexual maturity
2024-11-01
المخرجون من ديارهم في سبيل الله
2024-11-01


Hurwitz,s Irrational Number Theorem  
  
968   04:09 مساءً   date: 14-10-2020
Author : Apostol, T. M.
Book or Source : Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag
Page and Part : ...


Read More
Date: 12-12-2020 754
Date: 21-10-2019 2286
Date: 8-11-2020 916

Hurwitz's Irrational Number Theorem

As Lagrange showed, any irrational number alpha has an infinity of rational approximations p/q which satisfy

 |alpha-p/q|<1/(sqrt(5)q^2).

(1)

Furthermore, if there are no integers a,b,c,d with |ad-bc|=1 and alpha=(aalpha+b)/(dalpha+c) (corresponding to values of alpha associated with the golden ratio phi through their continued fractions), then

 |alpha-p/q|<1/(sqrt(8)q^2),

(2)

and if values of alpha associated with the silver ratio 1+sqrt(2) are also excluded, then

 |alpha-p/q|<5/(sqrt(221))1/(q^2).

(3)

In general, even tighter bounds of the form

 |alpha-p/q|<1/(L_nq^2)

(4)

can be obtained for the best rational approximation possible for an arbitrary irrational number alpha, where the L_n are called Lagrange numbers and get steadily larger for each "bad" set of irrational numbers which is excluded.


REFERENCES:

Apostol, T. M. Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, p. 145, 1997.

Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 40, 1987.

Chandrasekharan, K. An Introduction to Analytic Number Theory. Berlin: Springer-Verlag, p. 23, 1968.

Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 187-189, 1996.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.