Read More
Date: 12-12-2020
754
Date: 21-10-2019
2286
Date: 8-11-2020
916
|
As Lagrange showed, any irrational number has an infinity of rational approximations which satisfy
(1) |
Furthermore, if there are no integers with and (corresponding to values of associated with the golden ratio through their continued fractions), then
(2) |
and if values of associated with the silver ratio are also excluded, then
(3) |
In general, even tighter bounds of the form
(4) |
can be obtained for the best rational approximation possible for an arbitrary irrational number , where the are called Lagrange numbers and get steadily larger for each "bad" set of irrational numbers which is excluded.
REFERENCES:
Apostol, T. M. Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, p. 145, 1997.
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 40, 1987.
Chandrasekharan, K. An Introduction to Analytic Number Theory. Berlin: Springer-Verlag, p. 23, 1968.
Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 187-189, 1996.
|
|
مخاطر خفية لمكون شائع في مشروبات الطاقة والمكملات الغذائية
|
|
|
|
|
"آبل" تشغّل نظامها الجديد للذكاء الاصطناعي على أجهزتها
|
|
|
|
|
تستخدم لأول مرة... مستشفى الإمام زين العابدين (ع) التابع للعتبة الحسينية يعتمد تقنيات حديثة في تثبيت الكسور المعقدة
|
|
|