المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

الانتقادات الموجهة لأخلاقية الدعاية والاعلان
24-1-2021
The non-aspiration of [p’, t’, k] and [h’] dropping
2024-04-02
قصّة يوسف قبل الإِسلام وبعده
11-10-2014
التقليد
10-9-2016
مـاهـية ومفهـوم صنـاديـق الاسـتثـمار
7/12/2022
Copula
4-4-2021

Liouville,s Approximation Theorem  
  
661   01:29 صباحاً   date: 14-10-2020
Author : Apostol, T. M.
Book or Source : "Liouville,s Approximation Theorem." §7.3 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag
Page and Part : ...


Read More
Date: 1-11-2020 867
Date: 20-9-2020 805
Date: 30-11-2020 637

Liouville's Approximation Theorem

For any algebraic number x of degree n>2, a rational approximation p/q to x must satisfy

 |x-p/q|>1/(q^n)

for sufficiently large q. Writing r=n leads to the definition of the irrationality measure of a given number. Apostol (1997) states the theorem in the slightly modified but equivalent form that there exists a positive constant C(x) depending only on x such that for all integers p and q with q>0,

 |x-p/q|>(C(x))/(q^n).

REFERENCES:

Apostol, T. M. "Liouville's Approximation Theorem." §7.3 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 146-148, 1997.

Courant, R. and Robbins, H. "Liouville's Theorem and the Construction of Transcendental Numbers." §2.6.2 in What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 104-107, 1996.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.