Read More
Date: 1-11-2020
867
Date: 20-9-2020
805
Date: 30-11-2020
637
|
For any algebraic number of degree , a rational approximation to must satisfy
for sufficiently large . Writing leads to the definition of the irrationality measure of a given number. Apostol (1997) states the theorem in the slightly modified but equivalent form that there exists a positive constant depending only on such that for all integers and with ,
REFERENCES:
Apostol, T. M. "Liouville's Approximation Theorem." §7.3 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 146-148, 1997.
Courant, R. and Robbins, H. "Liouville's Theorem and the Construction of Transcendental Numbers." §2.6.2 in What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 104-107, 1996.
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
المجمع العلمي ينظّم ندوة حوارية حول مفهوم العولمة الرقمية في بابل
|
|
|