تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
p-adic Number
المؤلف:
Cassels, J. W. S
المصدر:
Ch. 2 in Lectures on Elliptic Curves. New York: Cambridge University Press, 1991.
الجزء والصفحة:
...
13-10-2020
1174
p-adic Number
A -adic number is an extension of the field of rationals such that congruences modulo powers of a fixed prime
are related to proximity in the so called "
-adic metric."
Any nonzero rational number can be represented by
![]() |
(1) |
where is a prime number,
and
are integers not divisible by
, and
is a unique integer. Then define the p-adic norm of
by
![]() |
(2) |
Also define the -adic norm
![]() |
(3) |
The -adics were probably first introduced by Hensel (1897) in a paper which was concerned with the development of algebraic numbers in power series.
-adic numbers were then generalized to valuations by Kűrschák in 1913. Hasse (1923) subsequently formulated the Hasse principle, which is one of the chief applications of local field theory. Skolem's
-adic method, which is used in attacking certain Diophantine equations, is another powerful application of
-adic numbers. Another application is the theorem that the harmonic numbers
are never integers (except for
). A similar application is the proof of the von Staudt-Clausen theorem using the
-adic valuation, although the technical details are somewhat difficult. Yet another application is provided by the Mahler-Lech theorem.
Every rational has an "essentially" unique
-adic expansion ("essentially" since zero terms can always be added at the beginning)
![]() |
(4) |
with an integer,
the integers between 0 and
inclusive, and where the sum is convergent with respect to
-adic valuation. If
and
, then the expansion is unique. Burger and Struppeck (1996) show that for
a prime and
a positive integer,
![]() |
(5) |
where the -adic expansion of
is
![]() |
(6) |
and
![]() |
(7) |
For sufficiently large ,
![]() |
(8) |
The -adic valuation on
gives rise to the
-adic metric
![]() |
(9) |
which in turn gives rise to the -adic topology. It can be shown that the rationals, together with the
-adic metric, do not form a complete metric space. The completion of this space can therefore be constructed, and the set of
-adic numbers
is defined to be this completed space.
Just as the real numbers are the completion of the rationals with respect to the usual absolute valuation
, the
-adic numbers are the completion of
with respect to the
-adic valuation
. The
-adic numbers are useful in solving Diophantine equations. For example, the equation
can easily be shown to have no solutions in the field of 2-adic numbers (we simply take the valuation of both sides). Because the 2-adic numbers contain the rationals as a subset, we can immediately see that the equation has no solutions in the rationals. So we have an immediate proof of the irrationality of
.
This is a common argument that is used in solving these types of equations: in order to show that an equation has no solutions in , we show that it has no solutions in an extension field. For another example, consider
. This equation has no solutions in
because it has no solutions in the reals
, and
is a subset of
.
Now consider the converse. Suppose we have an equation that does have solutions in and in all the
for every prime
. Can we conclude that the equation has a solution in
? Unfortunately, in general, the answer is no, but there are classes of equations for which the answer is yes. Such equations are said to satisfy the Hasse principle.
REFERENCES:
Burger, E. B. and Struppeck, T. "Does Really Converge? Infinite Series and p-adic Analysis." Amer. Math. Monthly 103, 565-577, 1996.
Cassels, J. W. S. Ch. 2 in Lectures on Elliptic Curves. New York: Cambridge University Press, 1991.
Cassels, J. W. S. and Scott, J. W. Local Fields. Cambridge, England: Cambridge University Press, 1986.
De Smedt, S. "-adic Arithmetic." The Mathematica J. 9, 349-357, 2004.
Gouvêa, F. Q. P-adic Numbers: An Introduction, 2nd ed. New York: Springer-Verlag, 1997.
Hasse, H. "Über die Darstellbarkeit von Zahlen durch quadratische Formen im Körper der rationalen Zahlen." J. reine angew. Math. 152, 129-148, 1923.
Hasse, H. "Die Normenresttheorie relativ-Abelscher Zahlkörper als Klassenkörpertheorie in Kleinen." J. reine angew. Math. 162, 145-154, 1930.
Hensel, K. "Über eine neue Begründung der Theorie der algebraischen Zahlen." Jahresber. Deutsch. Math. Verein 6, 83-88, 1897.
Kakol, J.; De Grande-De Kimpe, N.; and Perez-Garcia, C. (Eds.). p-adic Functional Analysis. New York: Dekker, 1999.
Koblitz, N. P-adic Numbers, P-adic Analysis, and Zeta-Functions, 2nd ed. New York: Springer-Verlag, 1984.
Koch, H. "Valuations." Ch. 4 in Number Theory: Algebraic Numbers and Functions. Providence, RI: Amer. Math. Soc., pp. 103-139, 2000.
Mahler, K. P-adic Numbers and Their Functions, 2nd ed. Cambridge, England: Cambridge University Press, 1981.
Ostrowski, A. "Über sogennante perfekte Körper." J. reine angew. Math. 147, 191-204, 1917.
Vladimirov, V. S. "Tables of Integrals of Complex-Valued Functions of p.-adic Arguments" 22 Nov 1999. https://arxiv.org/abs/math-ph/9911027.
Weisstein, E. W. "Books about P-adic Numbers." https://www.ericweisstein.com/encyclopedias/books/P-adicNumbers.html.
Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, p. 1168, 2002.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
