تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Giuga,s Conjecture
المؤلف:
Giuga, G.
المصدر:
"Su una presumibile propertietà caratteristica dei numeri primi." Ist. Lombardo Sci. Lett. Rend. A 83
الجزء والصفحة:
...
19-9-2020
820
Giuga's Conjecture
If and
![]() |
is necessarily a prime? In other words, defining
![]() |
does there exist a composite such that
? It is known that
iff for each prime divisor
of
,
and
(Giuga 1950, Borwein et al. 1996); therefore, any counterexample must be squarefree. A composite integer
satisfies
iff it is both a Carmichael number and a Giuga number. Giuga showed that there are no exceptions to the conjecture up to
. This was later improved to
(Bedocchi 1985) and
(Borwein et al. 1996).
Kellner (2002) provided a short proof of the equivalence of Giuga's and Agoh's conjectures. The combined conjecture can be described by a sum of fractions.
REFERENCES:
Bedocchi, E. "The Ring and the Euclidean Algorithm." Manuscripta Math. 53, 199-216, 1985.
Borwein, D.; Borwein, J. M.; Borwein, P. B.; and Girgensohn, R. "Giuga's Conjecture on Primality." Amer. Math. Monthly 103, 40-50, 1996.
Giuga, G. "Su una presumibile propertietà caratteristica dei numeri primi." Ist. Lombardo Sci. Lett. Rend. A 83, 511-528, 1950.
Kellner, B. C. Über irreguläre Paare höherer Ordnungen. Diplomarbeit. Göttingen, Germany: Mathematischen Institut der Georg August Universität zu Göttingen, 2002. https://www.bernoulli.org/~bk/irrpairord.pdf.
Kellner, B. C. "The Equivalence of Giuga's and Agoh's Conjectures." 15 Sep 2004. https://arxiv.org/abs/math.NT/0409259.
Ribenboim, P. The New Book of Prime Number Records. New York: Springer-Verlag, pp. 20-21, 1989.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
